Skip to main content
Log in

Spontaneous coordinated activity in cultured networks: Analysis of multiple ignition sites, primary circuits, and burst phase delay distributions

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

All higher order central nervous systems exhibit spontaneous neural activity, though the purpose and mechanistic origin of such activity remains poorly understood. We quantitatively analyzed the ignition and spread of collective spontaneous electrophysiological activity in networks of cultured cortical neurons growing on microelectrode arrays. Leader neurons, which form a mono-synaptically connected primary circuit, and initiate a majority of network bursts were found to be a small subset of recorded neurons. Leader/follower firing delay times formed temporally stable positively skewed distributions. Blocking inhibitory synapses usually resulted in shorter delay times with reduced variance. These distributions are characterizations of general aspects of internal network dynamics and provide estimates of pair-wise synaptic distances. The resulting analysis produced specific quantitative constraints and insights into the activation patterns of collective neuronal activity in self-organized cortical networks, which may prove useful for models emulating spontaneously active systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Artola, A., & Singer, W. (1994). NMDA receptors and developmental plasticity in visual neocortex. In G. L. Collingridge & J. C. Watkins (Eds.), The NMDA receptor (pp. 313–339). London: Oxford UP.

    Google Scholar 

  • Beggs, J. M., & Plenz, D. (2004). Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. Journal of Neuroscience, 24, 5216–5229.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari, Y. (2001). Developing networks play a similar melody. Trends in Neurosciences, 24, 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Bettencourt, L. M. A., Stephens, G. J., Ham, M. I., & Gross, G. W. (2007). The functional structure of cortical neuronal networks grown in vitro. Physical Review, E, 75, 021915.

    Article  CAS  Google Scholar 

  • Bliss, T. V., & Collingridge, G. L. A. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Corner, M. A., van Pelt, J., Wolters, P. S., Baker, R. E., & Nuytinck, R. H. (2002). Physiological effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks—An inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neuroscience and Biobehavioral Reviews, 26, 127–185.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D. R., Duggan, A. W., Felix, D., & Johnston, F. A. R. (1970). GABA, bicuculline and central inhibition. Nature, 226, 1222–1224.

    Article  PubMed  CAS  Google Scholar 

  • Darbon, P., Scicluna, L., Tscherter, A., & Streit, J. (2002). Mechanisms controlling bursting activity induced by disinhibition in spinal cord networks. European Journal of Neuroscience, 15, 671–683.

    Article  PubMed  Google Scholar 

  • DeMarse, T. B., Wagenaar, D. A., Blau, A. W., & Potter, S. M. (2001). The neurally controlled animat: Biological brains acting with simulated bodies. Autonomous Robots, 11, 305–310.

    Article  PubMed  Google Scholar 

  • Droge, M. H., Gross, G. W., Hightower, M. H., & Czisny, L. E. (1986). Multielectrode analysis of coordinated, multisite, rhythmic bursting in cultured CNS monolayer networks. Journal of Neuroscience, 6, 1583–1592.

    PubMed  CAS  Google Scholar 

  • Eytan, D., & Marom, S. (2006). Dynamics and effective topology underlying synchronization in networks of cortical neurons. Journal of Neuroscience, 26, 8465–8476.

    Article  PubMed  CAS  Google Scholar 

  • Feinerman, O., Segal, M., & Moses, E. (2007). Identification and dynamics of spontaneous burst initiation zones in unidimensional neuronal cultures. Journal of Neurophysiology, 97(4), 2937–2948.

    Article  PubMed  Google Scholar 

  • Grinvald, A., & Hildesheim, R. (2004). VSDI: A new era in functional imaging of cortical dynamics. Nature Reviews. Neuroscience, 5, 874–885.

    Article  PubMed  CAS  Google Scholar 

  • Gross, G. W. (1994). Internal dynamics of randomized mammalian neuronal networks in culture. In D. A. Stenger & T. M. McKenna (Eds.), Enabling technologies for cultured neural networks (pp. 277–317). New York: Academic.

    Google Scholar 

  • Gross, G. W., & Kowalski, J. M. (1999). Origins of activity patterns in self-organizing neuronal networks in vitro. Journal of Intelligent Material Systems and Structures, 10, 558–564.

    Article  Google Scholar 

  • Gross, G. W., & Schwalm, F. U. (1994). A closed flow chamber for long-term multichannel recording and optical monitoring. Journal of Neuroscience Methods, 52(1), 73–85.

    Article  PubMed  CAS  Google Scholar 

  • Gross, G. W., Wen, W. Y., & Lin, J. W. (1985). Transparent indium–tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures. Journal of Neuroscience Methods, 15(3), 243–252.

    Article  PubMed  CAS  Google Scholar 

  • Jimbo, Y., Robinson, H. P. C., & Kawana, A. (1998). Strengthening of synchronized activity by tetanic stimulation in cortical cultures: Application of planar electrode arrays. IEEE Transactions on Biomedical Engineering, 45, 1297–1304.

    Article  PubMed  CAS  Google Scholar 

  • Jimbo, Y., Tateno, T., & Robinson, H. P. C. (1999). Simultaneous induction of pathway-specific potentiation and depression in networks of cortical neurons. Biophysical Journal, 76, 670–678.

    Article  PubMed  CAS  Google Scholar 

  • Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H. P. C., & Kawana, A. (1996). Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures. Neuroscience Letters, 206, 109–112.

    Article  PubMed  CAS  Google Scholar 

  • Katz, L. C., & Shatz, C. J. (1996). Synaptic activity and the construction of cortical circuits. Science, 274, 1133–1138.

    Article  PubMed  CAS  Google Scholar 

  • Keefer, E. W., Gramowski, A., & Gross, G. W. (2001). NMDA receptor-dependent periodic oscillations in cultured spinal cord networks. Journal of Neurophysiology, 86, 3030–3042.

    PubMed  CAS  Google Scholar 

  • Leinenkugel, X., Khazipov, R., Cannon, R. C., Hirase, H., Ben Ari, Y., & Buzsaki, G. (2002). Correlated bursts of activity in the neonatal hippocampus in vivo. Science, 296, 2049–2052.

    Article  Google Scholar 

  • Maeda, E., Robinson, H. P. C., & Kawana, A. (1995). The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons. Journal of Neuroscience, 15, 6834–6845.

    PubMed  CAS  Google Scholar 

  • Marom, S., & Shahaf, G. (2002). Development, learning and memory in large random networks of cortical neurons: Lessons beyond anatomy. Quarterly Reviews of Biophysics, 35, 63–87.

    Article  PubMed  Google Scholar 

  • Meister, M., Wong, R. O. L., Baylor, D. A., & Shatz, C. J. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science, 252, 939–943.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi, K., & Kukita, F. (1998). Functional synapses in synchronized bursting of neocortical neurons in culture. Brain Research, 795, 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Provine, R. R. (1979). “Wing-flapping” develops in wingless chicks. Behavioral and Neural Biology, 27, 233–237.

    Article  PubMed  CAS  Google Scholar 

  • Puopolo, M., & Belluzzi, O. (2001). NMDA-dependent, network-driven oscillatory activity induced by bicuculline or removal of Mg2+ in rat olfactory bulb neurons. European Journal of Neuroscience, 13, 92–102.

    Article  PubMed  CAS  Google Scholar 

  • Ramakers, G. J. A., Van Galen, H., Feenstra, M. G. P., Corner, M. A., & Boer, G. J. (1994). Activity-dependent plasticity of inhibitory and excitatory amino acid transmitter systems in cultured rat cerebral cortex. International Journal of Developmental Neuroscience, 12, 611–621.

    Article  PubMed  CAS  Google Scholar 

  • Selinger, J. V., Pancrazio, J. J., & Gross, G. W. (2004). Measuring synchronization in neuronal networks for biosensor applications. Biosensors & Bioelectronics, 19(7), 675–683.

    Article  CAS  Google Scholar 

  • Shahaf, G., & Marom, S. (2001). Learning in networks of cortical neurons. Journal of Neuroscience, 21, 8782–8788.

    PubMed  CAS  Google Scholar 

  • Spitzer, N. C. (2006). Electrical activity in early neuronal development. Nature, 444, 707–712.

    Article  PubMed  CAS  Google Scholar 

  • Takikawa, Y., Kawagoe, R., & Hikosaka, O. (2002). Reward-dependent spatial selectivity of anticipatory activity in monkey caudate neurons. Journal of Neurophysiology, 87, 508–515.

    PubMed  Google Scholar 

  • Van Pelt, J., Wolters, P. S., Corner, M. A., Rutten, W. L. C., & Ramakers, G. J. A. (2004). Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks. IEEE Transactions on Biomedical Engineering, 51(11), 2051–2062.

    Article  PubMed  Google Scholar 

  • Wagenaar, D. A., Pine, J., & Potter, S. M. (2006). An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neuroscience, 7, 11.

    Article  PubMed  Google Scholar 

  • Wagenaar, D. A., Radhika, M., Pine, J., & Potter, S. M. (2005). Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation. Journal of Neuroscience, 25, 680–688.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L. I., & Poo, M. M. (2001). Electrical activity and development of neural circuits. Nature Neuroscience, 4, S1207–S1214.

    Article  Google Scholar 

Download references

Acknowledgements

This project supported by LDRD-ER-20050411, and in part by the Texas Advanced Technology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael I. Ham.

Additional information

Action Editor: Peter Latham

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ham, M.I., Bettencourt, L.M., McDaniel, F.D. et al. Spontaneous coordinated activity in cultured networks: Analysis of multiple ignition sites, primary circuits, and burst phase delay distributions. J Comput Neurosci 24, 346–357 (2008). https://doi.org/10.1007/s10827-007-0059-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0059-1

Keywords

Navigation