Skip to main content
Log in

The mechanism of coupling between electron transfer and proton translocation in respiratory complex I

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Absract

NADH-ubiquinone oxidoreductase (complex I) is the first and largest enzyme in the respiratory chain of mitochondria and many bacteria. It couples the transfer of two electrons between NADH and ubiquinone to the translocation of four protons across the membrane. Complex I is an L-shaped assembly formed by the hydrophilic (peripheral) arm, containing all the redox centres performing electron transfer and the membrane arm, containing proton-translocating machinery. Mitochondrial complex I consists of 44 subunits of about 1 MDa in total, whilst the prokaryotic enzyme is simpler and generally consists of 14 conserved “core” subunits. Recently we have determined the first atomic structure of the entire complex I, using the enzyme from Thermus thermophilus (536 kDa, 16 subunits, 9 Fe-S clusters, 64 TM helices). Structure suggests a unique coupling mechanism, with redox energy of electron transfer driving proton translocation via long-range (up to ~200 Å) conformational changes. It resembles a steam engine, with coupling elements (akin to coupling rods) linking parts of this molecular machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baradaran R, Berrisford JM, Minhas GS, Sazanov LA (2013) Crystal structure of the entire respiratory complex I. Nature 494(7438):443–448

    Article  CAS  Google Scholar 

  • Belevich G, Knuuti J, Verkhovsky MI, Wikstrom M, Verkhovskaya M (2011) Probing the mechanistic role of the long alpha-helix in subunit L of respiratory complex I from Escherichia coli by site-directed mutagenesis. Mol Microbiol 82(5):1086–1095

    Article  CAS  Google Scholar 

  • Berrisford JM, Sazanov LA (2009) Structural basis for the mechanism of respiratory complex I. J Biol Chem 284(43):29773–29783

    Article  CAS  Google Scholar 

  • Birrell JA, Hirst J (2010) Truncation of subunit ND2 disrupts the threefold symmetry of the antiporter-like subunits in complex I from higher metazoans. FEBS Lett 584(19):4247–4252

    Article  CAS  Google Scholar 

  • Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92

    Article  CAS  Google Scholar 

  • Bridges HR, Bill E, Hirst J (2012) Mossbauer spectroscopy on respiratory complex I: the iron-sulfur cluster ensemble in the NADH-reduced enzyme is partially oxidized. Biochemistry 51(1):149–158

    Article  CAS  Google Scholar 

  • Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281(43):32724–32727

    Article  CAS  Google Scholar 

  • Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, James AM, Cocheme HM, Reinhold J, Lilley KS, Partridge L, Fearnley IM, Robinson AJ, Hartley RC, Smith RA, Krieg T, Brookes PS, Murphy MP (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19(6):753–759

    Article  CAS  Google Scholar 

  • Cooley RB, Arp DJ, Karplus PA (2010) Evolutionary origin of a secondary structure: pi-helices as cryptic but widespread insertional variations of alpha-helices that enhance protein functionality. J Mol Biol 404(2):232–246

    Article  CAS  Google Scholar 

  • Efremov RG, Sazanov LA (2011a) Respiratory complex I: ‘steam engine’ of the cell? Curr Opin Struct Biol 21(4):532–540

    Article  CAS  Google Scholar 

  • Efremov RG, Sazanov LA (2011b) Structure of the membrane domain of respiratory complex I. Nature 476(7361):414–420

    Article  CAS  Google Scholar 

  • Efremov, R. G. and L. A. Sazanov (2012) The coupling mechanism of respiratory complex I - A structural and evolutionary perspective. Biochimica et Biophysica Acta

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465(7297):441–445

    Article  CAS  Google Scholar 

  • Euro L, Belevich G, Verkhovsky MI, Wikstrom M, Verkhovskaya M (2008) Conserved lysine residues of the membrane subunit NuoM are involved in energy conversion by the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Biochim Biophys Acta 1777:1166–1172

    Article  CAS  Google Scholar 

  • Friedrich T (2001) Complex I: a chimaera of a redox and conformation-driven proton pump? J Bioenerg Biomembr 33(3):169–177

    Article  CAS  Google Scholar 

  • Galkin AS, Grivennikova VG, Vinogradov AD (1999) H+/2e stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles. FEBS Lett 451(2):157–161

    Article  CAS  Google Scholar 

  • Galkin A, Drose S, Brandt U (2006) The proton pumping stoichiometry of purified mitochondrial complex I reconstituted into proteoliposomes. Biochim Biophys Acta 1757(12):1575–1581

    Article  CAS  Google Scholar 

  • Galkin A, Meyer B, Wittig I, Karas M, Schagger H, Vinogradov A, Brandt U (2008) Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I. J Biol Chem 283(30):20907–20913

    Article  CAS  Google Scholar 

  • Hayashi T, Stuchebrukhov AA (2010) Electron tunneling in respiratory complex I. Proc Natl Acad Sci U S A 107(45):19157–19162

    Article  CAS  Google Scholar 

  • Hinchliffe P, Carroll J, Sazanov LA (2006) Identification of a novel subunit of respiratory complex I from Thermus thermophilus. Biochemistry 45(14):4413–4420

    Article  CAS  Google Scholar 

  • Hirst J (2010) Towards the molecular mechanism of respiratory complex I. Biochem J 425(2):327–339

    Article  CAS  Google Scholar 

  • Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329(5990):448–451

    Article  CAS  Google Scholar 

  • Kaila VR, Wikstrom M, Hummer G (2014) Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I. Proc Natl Acad Sci U S A 111(19):6988–6993

    Article  CAS  Google Scholar 

  • Mathiesen C, Hagerhall C (2002) Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim Biophys Acta 1556(2–3):121–132

    Article  CAS  Google Scholar 

  • Nakamaru-Ogiso E, Kao MC, Chen H, Sinha SC, Yagi T, Ohnishi T (2010) The membrane subunit NuoL (ND5) is involved in the indirect proton pumping mechanism of escherichia coli complex I. J Biol Chem 285(50):39070–39078

    Article  CAS  Google Scholar 

  • Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402(6757):47–52

    Article  CAS  Google Scholar 

  • Roessler MM, King MS, Robinson AJ, Armstrong FA, Harmer J, Hirst J (2010) Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron–electron resonance. Proc Natl Acad Sci U S A 107(5):1930–1935

    Article  CAS  Google Scholar 

  • Sazanov LA (2007) Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 46(9):2275–2288

    Article  CAS  Google Scholar 

  • Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311(5766):1430–1436

    Article  CAS  Google Scholar 

  • Screpanti E, Hunte C (2007) Discontinuous membrane helices in transport proteins and their correlation with function. J Struct Biol 159(2):261–267

    Article  CAS  Google Scholar 

  • Steimle S, Willistein M, Hegger P, Janoschke M, Erhardt H, Friedrich T (2012) Asp563 of the horizontal helix of subunit NuoL is involved in proton translocation by the respiratory complex I. FEBS Lett 586(6):699–704

    Article  CAS  Google Scholar 

  • Torres-Bacete J, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T (2007) Characterization of the NuoM (ND4) subunit in Escherichia coli NDH-1: conserved charged residues essential for energy-coupled activities. J Biol Chem 282(51):36914–36922

    Article  CAS  Google Scholar 

  • Torres-Bacete J, Sinha PK, Matsuno-Yagi A, Yagi T (2011) Structural contribution of C-terminal segments of NuoL (ND5) and NuoM (ND4) subunits of complex I from escherichia coli. J Biol Chem 286(39):34007–34014

    Article  CAS  Google Scholar 

  • Verkhovskaya ML, Belevich N, Euro L, Wikstrom M, Verkhovsky MI (2008) Real-time electron transfer in respiratory complex I. Proc Natl Acad Sci U S A 105(10):3763–3767

    Article  CAS  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25(4):455–501

    Article  CAS  Google Scholar 

  • Vinogradov AD (1998) Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition. Biochim Biophys Acta 1364(2):169–185

    Article  CAS  Google Scholar 

  • Vinothkumar KR, Henderson R (2010) Structures of membrane proteins. Q Rev Biophys 43(1):65–158

    Article  CAS  Google Scholar 

  • Walker JE (1992) The NADH - ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys 25(3):253–324

    Article  CAS  Google Scholar 

  • Wikstrom M (1984) Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. FEBS Lett 169(2):300–304

    Article  CAS  Google Scholar 

  • Yagi T, Matsuno-Yagi A (2003) The proton-translocating NADH-Quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry 42(8):2266–2274

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid A. Sazanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazanov, L.A. The mechanism of coupling between electron transfer and proton translocation in respiratory complex I. J Bioenerg Biomembr 46, 247–253 (2014). https://doi.org/10.1007/s10863-014-9554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-014-9554-z

Keywords

Navigation