Skip to main content
Log in

New insights in the regulation of calcium transfers by muscle dystrophin-based cytoskeleton: implications in DMD

  • ORIGINAL PAPER
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Calcium mishandling in Duchenne muscular dystrophy (DMD) suggested that dystrophin, a membrane-associated cytoskeleton protein, may regulate calcium-signalling cascades such as calcium entries. Calcium overload in human DMD myotubes is dependent on their contractile activity suggesting the involvement of channels being activated during contraction and/or calcium release. Forced expression of mini-dystrophin in dystrophin-deficient myotubes, reactivates appropriate sarcolemmal expression of dystrophin-associated proteins and restores normal calcium handling in the cytosol. Furthermore, the recombinant mini-dystrophin reduced the store-operated calcium influx across the sarcolemma, and the mitochondrial calcium uptake during this influx. A slow component of calcium release dependent on IP3R, as well as the production of IP3, were also reduced to normal levels by expression of mini-dystrophin. Our studies provide a new model for the convergent regulation of transmembrane calcium influx and IP3-dependent calcium release by the dystrophin-based cytoskeleton (DBC). We also suggest molecular association of such channels with DBC which may provide the scaffold for assembling a multiprotein-signalling complex that modulates the channel activity. This suggests that the loss of this molecular association could participate in the alteration of calcium homeostasis observed in DMD muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovici H, Hogan AB, Obagi C, Topham MK, Gee SH (2003) Diacylglycerol kinase-zeta localization in skeletal muscle is regulated by phosphorylation and interaction with syntrophins. Mol Biol Cell 14:4499–4511

    Article  PubMed  CAS  Google Scholar 

  • Alderton JM, Steinhardt RA (2000) Calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. J␣Biol Chem 275:9452–9460

    Article  PubMed  CAS  Google Scholar 

  • Araya R, Liberona JL, Cardenas JC, Riveros N, Estrada M, Powell JA, Carrasco MA, Jaimovich E (2003) Dihydropyridine receptors as voltage sensors for a depolarization-evoked, IP3R-mediated, slow calcium signal in skeletal muscle cells. J Gen Physiol 121:3–16

    Article  PubMed  CAS  Google Scholar 

  • Arnaudeau S, Kelley WL, Walsh JV Jr, Demaurex N (2001) Mitochondria recycle Ca(2+) to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem 276:29430–29439

    Article  PubMed  CAS  Google Scholar 

  • Bakker AJ, Head SI, Williams DA, Stephenson DG (1993) Ca2+ levels in myotubes grown from the skeletal muscle of dystrophic (mdx) and normal mice. J Physiol 460:1–13

    PubMed  CAS  Google Scholar 

  • Balghi H, Sebille S, Constantin B, Patri S, Thoreau V, Mondin L, Mok E, Kitzis A, Raymond G, Cognard C (2006) Mini-dystrophin expression down-regulates overactivation of G protein-mediated IP3 signalling pathway in dystrophin-deficient muscle cells. J Gen Physiol 127:171–182

    Article  PubMed  CAS  Google Scholar 

  • Basset O, Boittin FX, Cognard C, Constantin B, Ruegg UT (2006) Bcl-2 overexpression prevents calcium overload and subsequent apoptosis in dystrophic myotubes. Biochem J 395:267–276

    Article  PubMed  CAS  Google Scholar 

  • Batchelor CL, Winder SJ (2006) Sparks, signals and shock absorbers: how dystrophin loss causes muscular dystrophy. Trends Cell Biol 16:198–205

    Article  PubMed  CAS  Google Scholar 

  • Behrens L, Bender A, Johnson MA, Hohlfeld R (1997) Cytotoxic mechanisms in inflammatory myopathies. Co-expression of Fas and protective Bcl-2 in muscle fibres and inflammatory cells. Brain 120 (Pt 6):929–938

    Article  PubMed  Google Scholar 

  • Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Physiol 499 (Pt 2):291–306

    PubMed  CAS  Google Scholar 

  • Bertorini TE, Bhattacharya SK, Palmieri GM, Chesney CM, Pifer D, Baker B (1982) Muscle calcium and magnesium content in Duchenne muscular dystrophy. Neurology 32:1088–1092

    PubMed  CAS  Google Scholar 

  • Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329

    PubMed  CAS  Google Scholar 

  • Bodensteiner JB, Engel AG (1978) Intracellular calcium accumulation in Duchenne dystrophy and other myopathies: a study of 567,000 muscle fibers in 114 biopsies. Neurology 28:439–446

    PubMed  CAS  Google Scholar 

  • Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82:743–752

    Article  PubMed  CAS  Google Scholar 

  • Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84:757–767

    Article  PubMed  CAS  Google Scholar 

  • Bulfield G, Siller WG, Wight PA, Moore KJ (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 81:1189–1192

    Article  PubMed  CAS  ADS  Google Scholar 

  • Carrasco MA, Figueroa S (1995) Inositol 1,4,5-trisphosphate 3-kinase activity in frog skeletal muscle. Comp Biochem Physiol B Biochem Mol Biol 110:747–753

    Article  PubMed  CAS  Google Scholar 

  • Challet C, Maechler P, Wollheim CB, Ruegg UT (2001) Mitochondrial calcium oscillations in C2C12 myotubes. J Biol Chem 276:3791–3797

    Article  PubMed  CAS  Google Scholar 

  • Collet C, Allard B, Tourneur Y, Jacquemond V (1999) Intracellular calcium signals measured with indo-1 in isolated skeletal muscle fibres from control and mdx mice. J Physiol 520(Pt 2):417–429

    Article  PubMed  CAS  Google Scholar 

  • Culligan K, Banville N, Dowling P, Ohlendieck K (2002) Drastic reduction of calsequestrin-like proteins and impaired calcium binding in dystrophic mdx muscle. J Appl Physiol 92:435–445

    PubMed  CAS  Google Scholar 

  • Deconinck N, Ragot T, Marechal G, Perricaudet M, Gillis JM (1996) Functional protection of dystrophic mouse (mdx) muscles after adenovirus-mediated transfer of a dystrophin minigene. Proc Natl Acad Sci USA 93:3570–3574

    Article  PubMed  CAS  ADS  Google Scholar 

  • Decrouy A, Renaud JM, Davis HL, Lunde JA, Dickson G, Jasmin BJ (1997) Mini-dystrophin gene transfer in mdx4cv diaphragm muscle fibers increases sarcolemmal stability. Gene Ther 4:401–408

    Article  PubMed  CAS  Google Scholar 

  • Decrouy A, Renaud JM, Lunde JA, Dickson G, Jasmin BJ (1998) Mini- and full-length dystrophin gene transfer induces the recovery of nitric oxide synthase at the sarcolemma of mdx4cv skeletal muscle fibers. Gene Ther 5:59–64

    Article  PubMed  CAS  Google Scholar 

  • Denetclaw WF Jr, Hopf FW, Cox GA, Chamberlain JS, Steinhardt RA (1994) Myotubes from transgenic mdx mice expressing full-length dystrophin show normal calcium regulation. Mol Biol Cell 5:1159–1167

    PubMed  CAS  Google Scholar 

  • Deval E, Levitsky DO, Marchand E, Cantereau A, Raymond G, Cognard C (2002) Na(+)/Ca(2+) exchange in human myotubes: intracellular calcium rises in response to external sodium depletion are enhanced in DMD. Neuromuscul Disord 12:665–673

    Article  PubMed  Google Scholar 

  • Ervasti JM, Campbell KP (1993) A role for the dystrophin– glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122:809–823

    Article  PubMed  CAS  Google Scholar 

  • Franco A Jr, Lansman JB (1990) Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344:670–673

    Article  PubMed  CAS  ADS  Google Scholar 

  • Friedrich O, Both M, Gillis JM, Chamberlain JS, Fink RH (2004) Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice. J Physiol 555:251–265

    Article  PubMed  CAS  Google Scholar 

  • Gailly P, Boland B, Himpens B, Casteels R, Gillis JM (1993) Critical evaluation of cytosolic calcium determination in resting muscle fibres from normal and dystrophic (mdx) mice. Cell Calcium 14:473–483

    Article  PubMed  CAS  Google Scholar 

  • Gilabert JA, Parekh AB (2000) Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca(2+) current I(CRAC). EMBO J 19:6401–6407

    Article  PubMed  CAS  Google Scholar 

  • Gillis JM (1999) Understanding dystrophinopathies: an inventory of the structural and functional consequences of the absence of dystrophin in muscles of the mdx mouse. J␣Muscle Res Cell Motil 20:605–625

    Article  PubMed  CAS  Google Scholar 

  • Grounds MD, Torrisi J (2004) Anti-TNFalpha (Remicade) therapy protects dystrophic skeletal muscle from necrosis. FASEB J 18:676–682

    Article  PubMed  CAS  Google Scholar 

  • Grozdanovic Z, Gosztonyi G, Gossrau R (1996) Nitric oxide synthase I (NOS-I) is deficient in the sarcolemma of striated muscle fibers in patients with Duchenne muscular dystrophy, suggesting an association with dystrophin. Acta Histochem 98:61–69

    PubMed  CAS  Google Scholar 

  • Guo WX, Nichol M, Merlie JP (1996) Cloning and expression of full length mouse utrophin: the differential association of␣utrophin and dystrophin with AChR clusters. FEBS Lett 398:259–264

    Article  PubMed  CAS  Google Scholar 

  • Head SI (1993) Membrane potential, resting calcium and calcium transients in isolated muscle fibres from normal and dystrophic mice. J Physiol 469:11–19

    PubMed  CAS  Google Scholar 

  • Hopf FW, Reddy P, Hong J, Steinhardt RA (1996) A capacitative calcium current in cultured skeletal muscle cells is mediated by the calcium-specific leak channel and inhibited by dihydropyridine compounds. J Biol Chem 271:22358–22367

    Article  PubMed  CAS  Google Scholar 

  • Hoth M, Fanger CM, Lewis RS (1997) Mitochondrial regulation of store-operated calcium signalling in T lymphocytes. J Cell Biol 137:633–648

    Article  PubMed  CAS  Google Scholar 

  • Imbert N, Cognard C, Duport G, Guillou C, Raymond G (1995) Abnormal calcium homeostasis in Duchenne muscular dystrophy myotubes contracting in vitro. Cell Calcium 18:177–186

    Article  PubMed  CAS  Google Scholar 

  • Imbert N, Vandebrouck C, Constantin B, Duport G, Guillou C, Cognard C, Raymond G (1996) Hypoosmotic shocks induce elevation of resting calcium level in Duchenne muscular dystrophy myotubes contracting in vitro. Neuromuscular Discord 6:351–360

    Article  CAS  Google Scholar 

  • Imbert N, Vandebrouck C, Duport G, Raymond G, Hassoni AA, Constantin B, Cullen MJ, Cognard C (2001) Calcium currents and transients in co-cultured contracting normal and Duchenne muscular dystrophy human myotubes. J␣Physiol 534:343–355

    Article  PubMed  CAS  Google Scholar 

  • Jackson MJ, Jones DA, Edwards RH (1985) Measurements of calcium and other elements in muscle biopsy samples from patients with Duchenne muscular dystrophy. Clin Chim Acta 147:215–221

    Article  PubMed  CAS  Google Scholar 

  • Johnson BD, Scheuer T, Catterall WA (2005) Convergent regulation of skeletal muscle Ca2+ channels by dystrophin, the actin cytoskeleton, and cAMP-dependent protein kinase. Proc Natl Acad Sci USA 102:4191–4196

    Article  PubMed  CAS  ADS  Google Scholar 

  • Kurebayashi N, Ogawa Y (2001) Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J Physiol 533:185–199

    Article  PubMed  CAS  Google Scholar 

  • Liberona JL, Powell JA, Shenoi S, Petherbridge L, Caviedes R, Jaimovich E (1998) Differences in both inositol 1,4,5- trisphosphate mass and inositol 1,4,5-trisphosphate receptors between normal and dystrophic skeletal muscle cell lines. Muscle Nerve 21:902–909

    Article  PubMed  CAS  Google Scholar 

  • Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF (2003) Sustained Ca2+ transfer across mitochondria is essential for mitochondrial Ca2+ buffering, sore-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278:44769–44779

    Article  PubMed  CAS  Google Scholar 

  • Mallouk N, Jacquemond V, Allard B (2000) Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels. Proc Natl Acad Sci USA 97:4950–4955

    Article  PubMed  CAS  ADS  Google Scholar 

  • Marchand E, Constantin B, Vandebrouck C, Raymond G, Cognard C (2001) Calcium homeostasis and cell death in Sol8 dystrophin-deficient cell line in culture. Cell Calcium 29:85–96

    Article  PubMed  CAS  Google Scholar 

  • Marchand E, Constantin B, Balghi H, Claudepierre MC, Cantereau A, Magaud C, Mouzou A, Raymond G, Braun S, Cognard C (2004) Improvement of calcium handling and changes in calcium-release properties after mini- or full-length dystrophin forced expression in cultured skeletal myotubes. Exp Cell Res 297:363–379

    Article  PubMed  CAS  Google Scholar 

  • McCarter GC, Denetclaw WF Jr, Reddy P, Steinhardt RA (1997) Lipofection of a cDNA plasmid containing the dystrophin gene lowers intracellular free calcium and calcium leak channel activity in mdx myotubes. Gene Ther 4:483–487

    Article  PubMed  CAS  Google Scholar 

  • Menke A, Jockusch H (1995) Extent of shock-induced membrane leakage in human and mouse myotubes depends on dystrophin. J Cell Sci 108(Pt 2):727–733

    PubMed  CAS  Google Scholar 

  • Messina S, Bitto A, Aguennouz M, Minutoli L, Monici MC, Altavilla D, Squadrito F, Vita G (2006) Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp Neurol 198:234–241

    Article  PubMed  CAS  Google Scholar 

  • Mokri B, Engel AG (1975) Duchenne dystrophy: electron microscopic findings pointing to a basic or early abnormality in the plasma membrane of the muscle fiber. Neurology 25:1111–1120

    PubMed  CAS  Google Scholar 

  • Morizumi H, Hizawa K, Nunomura S, Ii K (1984) Comparative study of alterations of skeletal muscle in Duchenne muscular dystrophy and polymyositis. Acta Pathol Jpn 34:1221–1242

    PubMed  CAS  Google Scholar 

  • Ou Y, Strege P, Miller SM, Makielski J, Ackerman M, Gibbons SJ, Farrugia G (2003) Syntrophin gamma 2 regulates SCN5A gating by a PDZ domain-mediated interaction. J␣Biol Chem 278:1915–1923

    Article  PubMed  CAS  Google Scholar 

  • Pan Z, Yang D, Nagaraj RY, Nosek TA, Nishi M, Takeshima H, Cheng H, Ma J (2002) Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat Cell Biol 4:379–383

    Article  PubMed  CAS  Google Scholar 

  • Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38:233–252

    Article  PubMed  CAS  Google Scholar 

  • Peterson ER, Masurovsky EB, Spiro AJ, Crain SM (1986) Duchenne dystrophic muscle develops lesions in long-term coculture with mouse spinal cord. Muscle Nerve 9:787–808

    Article  PubMed  CAS  Google Scholar 

  • Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA 90:3710–3714

    Article  PubMed  CAS  ADS  Google Scholar 

  • Phelps SF, Hauser MA, Cole NM, Rafael JA, Hinkle RT, Faulkner JA, Chamberlain JS (1995) Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 4:1251–1258

    PubMed  CAS  Google Scholar 

  • Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Guo W, Andrade FH (2002) A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet 11:263–272

    Article  PubMed  CAS  Google Scholar 

  • Powell JA, Carrasco MA, Adams DS, Drouet B, Rios J, Muller M, Estrada M, Jaimovich E (2001) IP(3) receptor function and localization in myotubes: an unexplored Ca(2+) signalling pathway in skeletal muscle. J Cell Sci 114:3673–3683

    PubMed  CAS  Google Scholar 

  • Pressmar J, Brinkmeier H, Seewald MJ, Naumann T, Rudel R (1994) Intracellular Ca2+ concentrations are not elevated in resting cultured muscle from Duchenne (DMD) patients and in MDX mouse muscle fibres. Pflugers Arch 426:499–505

    Article  PubMed  CAS  Google Scholar 

  • Rivet-Bastide M, Imbert N, Cognard C, Duport G, Rideau Y, Raymond G (1993) Changes in cytosolic resting ionized calcium level and in calcium transients during in vitro development of normal and Duchenne muscular dystrophy cultured skeletal muscle measured by laser cytofluorimetry using indo-1. Cell Calcium 14:563–571

    Article  PubMed  CAS  Google Scholar 

  • Robert V, Massimino ML, Tosello V, Marsault R, Cantini M, Sorrentino V, Pozzan T (2001) Alteration in calcium handling at the subcellular level in mdx myotubes. J Biol Chem 276:4647–4651

    Article  PubMed  CAS  Google Scholar 

  • Tidball JG, Albrecht DE, Lokensgard BE, Spencer MJ (1995) Apoptosis precedes necrosis of dystrophin-deficient muscle. J Cell Sci 108(Pt 6):2197–2204

    PubMed  CAS  Google Scholar 

  • Turner PR, Fong PY, Denetclaw WF, Steinhardt RA (1991) Increased calcium influx in dystrophic muscle. J Cell Biol 115:1701–1712

    Article  PubMed  CAS  Google Scholar 

  • Turner PR, Westwood T, Regen CM, Steinhardt RA (1988) Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature 335:735–738

    Article  PubMed  CAS  ADS  Google Scholar 

  • Tutdibi O, Brinkmeier H, Rudel R, Fohr KJ (1999) Increased calcium entry into dystrophin-deficient muscle fibres of MDX and ADR-MDX mice is reduced by ion channel blockers. J Physiol 515(Pt 3):859–868

    Article  PubMed  CAS  Google Scholar 

  • Vandebrouck C, Duport G, Cognard C, Raymond G (2001) Cationic channels in normal and dystrophic human myotubes. Neuromuscul Disord 11:72–79

    Article  PubMed  CAS  Google Scholar 

  • Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H, Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158:1089–1096

    Article  PubMed  CAS  Google Scholar 

  • Vandebrouck A, Ducret T, Basset O, Sebille S, Raymond G, Ruegg U, Gailly P, Cognard C, Constantin B (2005) Regulation of store-operated calcium entries and mitochondrial uptake by minidystrophin expression in cultured myotubes. FASEB J Epub 2005 Oct 27. short printed version 20: 136–138

    Google Scholar 

  • Wells DJ, Wells KE, Asante EA, Turner G, Sunada Y, Campbell KP, Walsh FS, Dickson G (1995) Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet 4:1245–1250

    PubMed  CAS  Google Scholar 

  • Woods CE, Novo D, DiFranco M, Capote J, Vergara JL (2005) Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres. J Physiol 568:867–880

    Article  PubMed  CAS  Google Scholar 

  • Yeung EW, Whitehead NP, Suchyna TM, Gottlieb PA, Sachs F, Allen DG (2005) Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J␣Physiol 562:367–380

    Article  PubMed  CAS  Google Scholar 

  • Zhou YW, Oak SA, Senogles SE, Jarrett HW (2005) Laminin-alpha1 globular domains 3 and 4 induce heterotrimeric G protein binding to alpha-syntrophin’s PDZ domain and alter intracellular Ca2+ in muscle. Am J Physiol Cell Physiol 288:C377–C388

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the CNRS, the French Ministry of Research, and by “Association Française contre les Myopathies” (AFM). This review is partly based on a collaboration with Dr P. Gailly and Dr T. Ducret (Departement de Physiologie, Université Catholique de Louvain, Brussels B-1200, Belgium), and Dr O. Basset and Prof U. Ruegg (Laboratory of Pharmacology, University of Geneva, CH-1211 Geneva 4, Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Constantin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantin, B., Sebille, S. & Cognard, C. New insights in the regulation of calcium transfers by muscle dystrophin-based cytoskeleton: implications in DMD. J Muscle Res Cell Motil 27, 375–386 (2006). https://doi.org/10.1007/s10974-006-9085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-006-9085-2

Keywords

Navigation