Skip to main content
Log in

Myosin phosphorylation and force potentiation in skeletal muscle: evidence from animal models

  • Review
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

The contractile performance of mammalian fast twitch skeletal muscle is history dependent. The effect of previous or ongoing contractile activity to potentiate force, i.e. increase isometric twitch force, is a fundamental property of fast skeletal muscle. The precise manifestation of force potentiation is dependent upon a variety of factors with two general types being identified; staircase potentiation referring to the progressive increase in isometric twitch force observed during low frequency stimulation while posttetanic potentiation refers to the step—like increase in isometric twitch force observed following a brief higher frequency (i.e. tetanic) stimulation. Classic studies established that the magnitude and duration of potentiation depends on a number of factors including muscle fiber type, species, temperature, sarcomere length and stimulation paradigm. In addition to isometric twitch force, more recent work has shown that potentiation also influences dynamic (i.e. concentric and/or isotonic) force, work and power at a range of stimulus frequencies in situ or in vitro, an effect that may translate to enhanced physiological function in vivo. Early studies performed on both intact and permeabilized models established that the primary mechanism for this modulation of performance was phosphorylation of myosin, a modification that increased the Ca2+ sensitivity of contraction. More recent work from a variety of muscle models indicates, however, the presence of a secondary mechanism for potentiation that may involve altered Ca2+ handling. The primary purpose of this review is to highlight these recent findings relative to the physiological utility of force potentiation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbate F, Sargeant AJ, Verdijk PW, de Haan A (2000) Effects of high-frequency initial pulses and posttetanic potentiation on power output of skeletal muscle. J Appl Physiol 88:35–40

    PubMed  CAS  Google Scholar 

  • Abbate F, Van Der Velden J, Stienen GJ, De Haan A (2001) Post-tetanic potentiation increases energy cost to a higher extent than work in rat fast skeletal muscle. J Musc Res Cell Motil 22:703–710

    CAS  Google Scholar 

  • Alamo L, Wriggers W, Pinto A, Bártoli F, Salazar L, Zhao FQ, Craig R, Padrón R (2008) Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity. J Mol Biol 384(4):780–797

    PubMed  CAS  Google Scholar 

  • Bagust J, Lewis DM, Luck JC (1974) Post-tetanic effects in motor units of fast and slow twitch muscle of the cat. J Physiol 237(1):115–121

    PubMed  CAS  Google Scholar 

  • Barclay CJ (1992) Effect of fatigue on rate of isometric force development in mouse fast- and slow-twitch muscles. Am J Physiol 263(32):1065–1072

    Google Scholar 

  • Barsotti RJ, Butler TM (1984) Chemical energy usage and myosin light chain phosphorylation in mammalian skeletal muscle. J Musc Res Cell Motil 5(1):45–64

    CAS  Google Scholar 

  • Bernhard CG, von Euler US, Skoglund CR (1941) Post-tetanic action potentials in mammalian muscle. Acta Physiol Scand 2:284–288

    Google Scholar 

  • Bicer S, Reiser PJ (2004) Myosin light chain isoform expression among single mammalian skeletal muscle fibres: species variations. J Musc Res Cell Motil 25:623–633

    CAS  Google Scholar 

  • Bozzo C, Stevens L, Toniolo L, Mounier Y, Reggiani C (2003) Increased phosphorylation of myosin light chain associated with slow-to-fast transition in rat soleus. Am J Physiol (Cell Physiol) 285:575–583

    Google Scholar 

  • Bozzo C, Spolaore B, Toniolo L, Stevens L, Bastide B, Cieniewski-Bernard C, Fontana A, Mounier Y, Reggiani C (2005) Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles. FEBS J 272:5771–5785

    PubMed  CAS  Google Scholar 

  • Brenner B (1988) Effect of Ca+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction. Proc Nati Acad Sci USA 85:3265–3269

    CAS  Google Scholar 

  • Brenner B, Eisenberg E (1986) Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution. Proc Natl Acad Sci USA 83(10):3542–3546

    PubMed  CAS  Google Scholar 

  • Brito R, Alamo L, Lundberg U, Guerrero JR, Pinto A, Sulbarán G, Gawinowicz MA, Craig R, Padrón R (2011) A molecular model of phosphorylation-based activation and potentiation of tarantula muscle thick filaments. J Mol Biol 414(1):44–61

    PubMed  CAS  Google Scholar 

  • Brown IA, Loeb GE (1998) Post-activation potentiation: a clue for simplifying models of muscle dynamics. Am Zool 38:743–754

    Google Scholar 

  • Brown IE, Loeb GE (1999) Measured and modeled properties of mammalian skeletal muscle. I. The effects of post-activation potentiation on the time course and velocity dependencies of force production. J Musc Res Cell Motil 20:443–456

    CAS  Google Scholar 

  • Brown GL, von Euler US (1938) The after effects of a tetanus on mammalian muscle. J Physiol 93:39–60

    PubMed  CAS  Google Scholar 

  • Buller AJ, Kean CJ, Ranatunga KW, Smith JM (1981) Post-tetanic depression of twitch tension in the cat soleus muscle. Exp Neurol 73(1):78–89

    PubMed  CAS  Google Scholar 

  • Butler TM, Seigman MJ, Mooers SV, Barsotti RJ (1983) Myosin light chain phosphorylation does not modulate cross bridge cycling in mouse skeletal muscle. Science 220:1167–1169

    PubMed  CAS  Google Scholar 

  • Caterini D, Gittings W, Huang J, Vandenboom R (2011) The effect of work cycle frequency on the potentiation of dynamic function in fast mouse muscle. J Exp Biol 214:3915–3923

    PubMed  CAS  Google Scholar 

  • Childers MK, McDonald KS (2004) Regulatory light chain phosphorylation increases eccentric contraction-induced injury in skinned fast-twitch fibers. Musc Nerv 29:313–317

    CAS  Google Scholar 

  • Close R, Hoh JF (1968a) Influence of temperature on isometric contractions of rat skeletal muscles. Nature 217(5134):1179–1180

    PubMed  CAS  Google Scholar 

  • Close R, Hoh JF (1968b) The after-effects of repetitive stimulation on the isometric twitch contraction of rat fast skeletal muscle. J Physiol 197:461–477

    PubMed  CAS  Google Scholar 

  • Close R, Hoh JF (1969) Post-tetanic potentiation of twitch contractions of cross-innervated rat fast and slow muscles. Nature 221(5176):179–181

    PubMed  CAS  Google Scholar 

  • Colomo F, Rocchi P (1965) Eserine effects on single twitches and staircase phenomenon in frog nerve-single muscle fibre preparations. Arch Fisiol 65(1):24–51

    PubMed  CAS  Google Scholar 

  • Cooke R (2007) Modulation of the actomyosin interaction during fatigue of skeletal muscle. Musc Nerv 36:756–777

    CAS  Google Scholar 

  • Craig R, Padrón R, Kendrick-Jones J (1987) Structural changes accompanying phosphorylation of tarantula muscle myosin filaments. J Cell Biol 105(3):1319–1327

    PubMed  CAS  Google Scholar 

  • Crow MT, Kushmerick MJ (1982a) Phosphorylation of myosin light chains in mouse fast-twitch muscle associated with reduced actomyosin turnover rate. Science 217(4562):835–837

    PubMed  CAS  Google Scholar 

  • Crow MT, Kushmerick MJ (1982b) Myosin light chain phosphorylation is associated with a decrease in the energy cost for contraction in fast twitch mouse muscle. J Biol Chem 257(5):2121–2124

    PubMed  CAS  Google Scholar 

  • Davis JS, Satorius CL, Epstein ND (2002) Kinetic effects of myosin regulatory light chain phosphorylation on skeletal muscle contraction. Biophys J 83(1):359–370

    PubMed  CAS  Google Scholar 

  • Decostre V, Gillis JM, Gailly P (2000) Effect of adrenaline on the post-tetanic potentiation in mouse skeletal muscle. J Musc Res Cell Motil 21:247–254

    CAS  Google Scholar 

  • Dickinson MH, Hyatt CJ, Lehmann FO, Moore JR, Reedy MC, Simcox A, Tohtong R, Vigoreaux JO, Yamashita H, Maughan DW (1997) Phosphorylation-dependent power output of transgenic flies: an integrated study. Biophys J 73(6):3122–3134

    PubMed  CAS  Google Scholar 

  • Ebashi S, Endo M (1968) Calcium ion and muscle contraction. Prog Biophys Mol Biol 18:123–183

    PubMed  CAS  Google Scholar 

  • Franks-Skiba K, Lardelli R, Goh G, Cooke R (2007) Myosin light chain phosphorylation inhibits muscle fiber shortening velocity in the presence of vanadate. Am J Physiol (Regul Integr Comp Physiol) 292:1603–1612

    Google Scholar 

  • Geeves MA, Holmes KC (2005) The molecular mechanism of muscle contraction. Adv Protein Chem 71:161–193

    PubMed  CAS  Google Scholar 

  • Gittings W, Huang J, Smith IC, Quadrilatero J, Vandenboom R (2011) The effect of skeletal myosin light chain kinase gene ablation on the fatigability of mouse fast muscle. J Musc Res Cell Motil 31:337–348

    CAS  Google Scholar 

  • Gittings W, Huang J, Vandenboom R (2012) Tetanic force potention of mouse EDL muscle is shortening speed dependent. J Musc Res Cell Motil 33(5):359–368

    Google Scholar 

  • Gonsalez B, Negredo P, Hernando R, Manso R (2002) Protein variants of skeletal muscle regulatory myosin light chain isoforms: prevalence in mammals, generation and transitions during muscle remodeling. Eur J Physiol 443:377–386

    Google Scholar 

  • Gordon DA, Enoka RM, Stuart DG (1990) Motor-unit force potentiation in adult cats during a standard fatigue test. J Physiol 421:569–582

    PubMed  CAS  Google Scholar 

  • Gorselink M, Drost MR, de Brouwer KF, Schaart G, van Kranenburg GP, Roemen TH, van Bilsen M, Charron MJ, van der Vusse GJ (2002) Increased muscle fatigability in GLUT-4-deficient mice. Am J Physiol Endocrinol Metab 282(2):348–354

    Google Scholar 

  • Grange RW, Vandenboom R, Houston ME (1993) Physiological significance of myosin phosphorylation in skeletal muscle. Can J Appl Physiol 18(3):229–242

    PubMed  CAS  Google Scholar 

  • Grange RW, Cory CR, Vandenboom R, Houston ME (1995) Myosin phosphorylation augments the force-displacement and force-velocity relationships of mouse fast muscle. Am J Physiol 269:713–724

    Google Scholar 

  • Grange RW, Vandenboom R, Xeni J, Houston ME (1998) Potentiation of in vitro concentric work in mouse fast muscle. J Appl Physiol 84:236–243

    PubMed  CAS  Google Scholar 

  • Greenberg MJ, Mealy TR, Watt JD, Jones M, Szczesna-Cordary D, Moore JR (2009) The molecular effects of skeletal muscle myosin regulatory light chain phosphorylation. Am J Physiol Regul Integr Comp Physiol 297(2):265–274

    Google Scholar 

  • Greenberg MJ, Mealy TR, Jones M, Szczesna-Cordary D, Moore JR (2010) The direct molecular effects of fatigue and myosin regulatory light chain phosphorylation on the actomyosin contractile apparatus. Am J Physiol Regul Integr Comp Physiol 298(4):989–996

    Google Scholar 

  • Guttman SA, Horton RG, Wilber DT (1937) Enhancement of muscle contraction after tetanus. Am J Physiol 119(3):463–473

    Google Scholar 

  • Hennig R, Lømo T (1987) Gradation of force output in normal fast and slow muscles of the rat. Acta Physiol Scand 130(1):133–142

    PubMed  CAS  Google Scholar 

  • Hibberd MG, Dantzig JA, Trentham DR, Goldman YE (1985) Phosphate release and force generation in skeletal muscle fibers. Science 228(4705):1317–1319

    PubMed  CAS  Google Scholar 

  • Hidalgo C, Craig R, Ikebe M, Padrón R (2001) Mechanism of phosphorylation of the regulatory light chain of myosin from tarantula striated muscle. J Musc Res Cell Motil 22(1):51–59

    CAS  Google Scholar 

  • Hoekman TB (1977) Fatigability of normal and dystrophic chicken muscle in vivo. Exp Neurol 54(3):565–578

    PubMed  CAS  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    PubMed  CAS  Google Scholar 

  • Inglis JG, Howard J, McIntosh K, Gabriel DA, Vandenboom R (2011) Decreased motor unit discharge rate in the potentiated human tibialis anterior muscle. Acta Physiol 201(4):483–492

    CAS  Google Scholar 

  • Isaacson A (1969) Post-staircase potentiation, a long-lasting twitch potentiation of muscles induced by previous activity. Life Sci 8(7):337–342

    PubMed  CAS  Google Scholar 

  • Josephson RK (1993) Contraction dynamics and power output of skeletal muscle. Contraction dynamics and power output of skeletal muscle. Annu Rev Physiol 55:527–546

    PubMed  CAS  Google Scholar 

  • Jung HS, Komatsu S, Ikebe M, Craig R (2008) Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells. Mol Biol Cell 19(8):3234–3242

    PubMed  CAS  Google Scholar 

  • Karatzaferi C, Franks-Skiba K, Cooke R (2008) Inhibition of shortening velocity of skinned skeletal muscle fibers in conditions that mimic fatigue. Am J Physiol (Regul Integr Comp Physiol) 294:948–955

    Google Scholar 

  • Klein CS, Ivanova TD, Rice CL, Garland SJ (2001) Motor unit discharge rate following twitch potentiation in human triceps brachii muscle. Neurosci Lett 316(3):153–156

    PubMed  CAS  Google Scholar 

  • Klug GA, Botterman BR, Stull JT (1982) The effect of low frequency stimulation on myosin light chain phosphorylation in skeletal muscle. J Biol Chem 257:4670–4688

    Google Scholar 

  • Klug GA, Houston ME, Stull JT, Pette D (1986) Decrease in myosin light chain kinase activity of rabbit fast muscle by chronic stimulation. FEBS Lett 200(2):352–354

    PubMed  CAS  Google Scholar 

  • Klug GA, Biedermann M, Houston ME, Stuart D, Mumby M, Stull JT (1992) Chronic low frequency stimulation reduces myosin phosphorylation in rabbit fast twitch muscle. Can J Physiol Pharmacol 70(6):859–865

    PubMed  CAS  Google Scholar 

  • Kraft T, Xu S, Brenner B, Yu LC (1999) The effect of thin filament activation on the attachment of weak binding cross-bridges: a two-dimensional x-ray diffraction study on single muscle fibers. Biophys J 76(3):1494–1513

    PubMed  CAS  Google Scholar 

  • Krarup C (1981a) Enhancement and diminution of mechanical tension evoked by staircase and by tetanus in rat muscle. J Physiol 311:355–372

    PubMed  CAS  Google Scholar 

  • Krarup C (1981b) Temperature dependence of enhancement and diminution of tension evoked by staircase and by tetanus in rat muscle. J Physiol 311:373–387

    PubMed  CAS  Google Scholar 

  • Krarup C (1981c) The effect of dantrolene on the enhancement and diminution of tension evoked by staircase and by tetanus in rat muscle. J Physiol 311:389–400

    PubMed  CAS  Google Scholar 

  • Krarup C (1983) Evoked responses in normal and diseased muscle with particular reference to twitch potentiation. Acta Neurol Scand 68(5):269–315

    PubMed  CAS  Google Scholar 

  • Lee FS (1907) The cause of treppe. Am J Physiol 18:267–282

    CAS  Google Scholar 

  • Lehman W, Galińska-Rakoczy A, Hatch V, Tobacman LS, Craig R (2009) Structural basis for the activation of muscle contraction by troponin and tropomyosin. J Mol Biol 388(4):673–681

    PubMed  CAS  Google Scholar 

  • Levine RJ, Chantler PD, Kensler RW, Woodhead JL (1991) Effects of phosphorylation by myosin light chain kinase on the structure of Limulus thick filaments. J Cell Biol 113(3):563–572

    PubMed  CAS  Google Scholar 

  • Levine R, Kensler R, Yang Z, Stull J, Sweeney H (1996) Myosin light chain phosphorylation affects the structure of rabbit skeletal muscle thick filaments. Biophys J 71:898–907

    PubMed  CAS  Google Scholar 

  • Levine RJ, Yang Z, Epstein ND, Fananapazir L, Stull JT, Sweeney HL (1998) Structural and functional responses of mammalian thick filaments to alterations in myosin regulatory light chains. J Struct Biol 122:149–161

    PubMed  CAS  Google Scholar 

  • MacIntosh BR, Bryan SN (2002) Potentiation of shortening and velocity of shortening during repeated isotonic tetanic contractions in mammalian skeletal muscle. Pflugers Arch 443:804–812

    PubMed  CAS  Google Scholar 

  • MacIntosh BR, Gardiner PF (1987) Posttetanic potentiation and skeletal muscle fatigue: interactions with caffeine. Can J Physiol Pharmacol 65(2):260–268

    PubMed  CAS  Google Scholar 

  • MacIntosh BR, Kupsh CC (1987) Staircase, fatigue, and caffeine in skeletal muscle in situ. Musc Nerve 10(8):717–722

    CAS  Google Scholar 

  • MacIntosh BR, Willis JC (2000) Force-frequency relationship and potentiation in ammalian skeletal muscle. J Appl Physiol 88(6):2088–2096

    PubMed  CAS  Google Scholar 

  • MacIntosh BR, Roberge MC, Gardiner PF (1988) Absence of staircase following disuse in rat gastrocnemius muscle. Can J Physiol Pharmacol 66(6):707–713

    PubMed  CAS  Google Scholar 

  • MacIntosh BR, Grange RW, Cory CR, Houston ME (1993) Myosin light chain phosphorylation during staircase in fatigued skeletal muscle. Pflugers Arch 425:9–15

    PubMed  CAS  Google Scholar 

  • MacIntosh BR, Smith MJ, Rassier DE (2008a) Staircase but not posttetanic potentiation in rat muscle after spinal cord hemisection. Musc Nerve 38(5):1455–1465

    Google Scholar 

  • MacIntosh BR, Taub EC, Dormer GN, Tomaras EK (2008b) Potentiation of isometric and isotonic contractions during high-frequency stimulation. Pflugers Arch 456:449–458

    PubMed  CAS  Google Scholar 

  • Manning DR, Stull JT (1979) Myosin light chain phosphorylation and phosphorylase A activity in rat extensor digitorum longus muscle. Biochem Biophys Res Commun 90(1):164–170

    PubMed  CAS  Google Scholar 

  • Manning DR, Stull JT (1982) Myosin light chain phosphorylation -dephosphorylation in mammalian skeletal muscle. Am J Physiol 242:C234–C241

    PubMed  CAS  Google Scholar 

  • Metzger JM, Moss RL (1990) Calcium-sensitive cross-bridge transitions in mammalian fast and slow skeletal muscle fibers. Science 247(4946):1088–1090

    PubMed  CAS  Google Scholar 

  • Metzger JM, Greaser ML, Moss RL (1989) Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibres. J Gen Physiol 93:855–883

    PubMed  CAS  Google Scholar 

  • Miller MS, Farman GP, Braddock JM, Soto-Adames FN, Irving TC, Vigoreaux JO, Maughan DW (2011) Regulatory light chain phosphorylation and N-terminal extension increase cross-bridge binding and power output in drosophila at in vivo myofilament lattice spacing. Biophys J 100(7):1737–1746

    PubMed  CAS  Google Scholar 

  • Moore RL, Persechini A (1990) Length-dependence of isometric twitch tension potentiation and myosin phosphorylation in mouse skeletal muscle. J Cell Physiol 143(2):257–262

    PubMed  CAS  Google Scholar 

  • Moore RL, Stull JT (1984) Myosin light chain phosphorylation in fast and slow skeletal muscles in situ. Am J Physiol Cell Physiol 247(5):C462–C471

    CAS  Google Scholar 

  • Moore RL, Houston ME, Iwamoto GA, Stull JT (1985) Phosphorylation of rabbit skeletal muscle myosin in situ. J Cell Physiol 125:301–305

    PubMed  CAS  Google Scholar 

  • Moore RL, Palmer BL, Williams SL, Tanabe H, Grange RW, Houston ME (1990) Effect of temperature on myosin phosphorylation in mouse skeletal muscle. Am J Physiol 259:C432–C438

    PubMed  CAS  Google Scholar 

  • Padrón R, Panté N, Sosa H, Kendrick-Jones J (1991) X-ray diffraction study of the structural changes accompanying phosphorylation of tarantula muscle. J Musc Res Cell Motil 12(3):235–241

    Google Scholar 

  • Palmer BM, Moore RL (1989) Myosin light chain phosphorylation and tension potentiation in mouse skeletal muscle. Am J Physiol 257:C1012–C1019

    PubMed  CAS  Google Scholar 

  • Patel JR, Diffee GM, Moss RL (1996) Myosin regulatory light chain phosphorylation modulates the Ca2+ dependence of the kinetics of tension development in skeletal muscle. Biophys J 70(5):2333–2340

    PubMed  CAS  Google Scholar 

  • Patel JR, Diffee GM, Huang XP, Moss RL (1998) Phosphorylation of myosin regulatory light chain eliminates force-dependent changes in relaxation rates in skeletal muscle. Biophys J 74:360–368

    PubMed  CAS  Google Scholar 

  • Perrie WT, Smillie LB, Perry SB (1973) A phosphorylated light-chain component of myosin from skeletal muscle. Biochem J 135(1):151–164

    PubMed  CAS  Google Scholar 

  • Persechini A, Stull JT, Cooke R (1985) The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers. J Biol Chem 260:7951–7954

    PubMed  CAS  Google Scholar 

  • Piazzesi G, Reconditi M, Linari M, Lucii L, Bianco P, Brunello E, Decostre V, Stewart A, Gore DB, Irving TC, Irving M, Lombardi V (2007) Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size. Cell 131(4):784–795

    PubMed  CAS  Google Scholar 

  • Ramsey RW, Street SF (1941) Muscle function as studied in single muscle fibres. Biol Symp 3:9–34

    Google Scholar 

  • Rankin LL, Enoka RM, Volz KA, Stuart DG (1988) Coexistence of twitch potentiation and tetanic force decline in rat hindlimb muscle. J Appl Physiol 65(6):2687–2699

    PubMed  CAS  Google Scholar 

  • Rassier DE, Herzog W (2002) Effect of pH on the length dependent twitch potentiation in skeletal muscle. J Appl Physiol 92(3):1293–1299

    Google Scholar 

  • Rassier DE, MacIntosh BR (2000) Length dependence of staircase potentiation: interactions with caffeine and dantrolene sodium. Can J Physiol Pharmacol 78(4):350–357

    PubMed  CAS  Google Scholar 

  • Rassier DE, MacIntosh BR (2002) Sarcomere length-dependence of activity-dependent twitch potentiation in mouse skeletal muscle. BMC Physiol 2:19

    Google Scholar 

  • Rassier DE, Tubman LA, MacIntosh BR (1997) Length-dependent potentiation and myosin light chain phosphorylation in rat gastrocnemius muscle. Am J Physiol 273(1):C198–C204

    PubMed  CAS  Google Scholar 

  • Rassier DE, Tubman LA, MacIntosh BR (1998) Caffeine and length dependence of staircase potentiation in skeletal muscle. Can J Physiol Pharmacol 76(10–11):975–982

    PubMed  CAS  Google Scholar 

  • Rassier DE, Tubman LA, MacIntosh BR (1999) Staircase in mammalian muscle without light chain phosphorylation. Braz J Med Biol Res 32(1):121–129

    PubMed  CAS  Google Scholar 

  • Rayment I, Holden HM (1994) The three-dimensional structure of a molecular motor. Trends Biochem Sci 19(3):129–134

    PubMed  CAS  Google Scholar 

  • Ritchie JM, Wilkie DR (1955) The effect of previous stimulation on the active state of muscle. J Physiol 130:488–496

    PubMed  CAS  Google Scholar 

  • Ritz-Gold CJ, Cooke R, Blumenthal DK, Stull JT (1980) Light chain phosphorylation alters the conformation of skeletal muscle myosin. Biochem Biophys Res Commun 93(1):209–214

    PubMed  CAS  Google Scholar 

  • Ryder JW, Lau KS, Kamm KE, Stull JT (2007) Enhanced skeletal muscle contraction with myosin light chain phosphorylation by a calmodulin-sensing kinase. J Biol Chem 282:20447–20454

    PubMed  CAS  Google Scholar 

  • Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76(2):371–423

    PubMed  CAS  Google Scholar 

  • Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531

    PubMed  CAS  Google Scholar 

  • Smith IC, Huang J, Quadrilatero J, Tupling AR, Vandenboom R (2010) Force potentiation in the MDX mouse. J Musc Res Cell Motil 31(4):267–277

    Google Scholar 

  • Smith IC, Gittings W, Bloemberg D, Huang J, Quadrialtero J, Tupling AR, Vandenboom R (2013) Potentiation in mouse lumbrical muscle without myosin light chain phosphorylation: is resting calcium responsible? J Gen Physiol 141(3):297–308

    PubMed  CAS  Google Scholar 

  • Standaert FG (1964) The mechanisms of post-tetanic potentiation in cat soleus and gastrocnemius muscles. J Gen Physiol 47:987–1001

    PubMed  CAS  Google Scholar 

  • Stephenson GM, Stephenson DG (1993) Endogenous MLC2 phosphorylation and Ca(2+)-activated force in mechanically skinned skeletal muscle fibres of the rat. Stephenson GM, Stephenson DG. Pflugers Arch 424(1):30–38

    PubMed  CAS  Google Scholar 

  • Stevens L, Firinga C, Gohlsch B, Bastide B, Mounier Y, Pette D (2000) Effects of unweighting and clenbuterol on myosin light and heavy chains in fast and slow muscles of rat. Am J Physiol (Cell Physiol) 279(5):1558–1563

    Google Scholar 

  • Stevens L, Bastide B, Bozzo C, Mounier Y (2004) Hybrid fibres under slow-to-fast transformations: expression is of myosin heavy and light chains in rat soleus muscle. Flugers Arch 448(5):507–514

    CAS  Google Scholar 

  • Stewart M, Franks-Skiba K, Cooke R (2009) Myosin regulatory light chain phosphorylation inhibits shortening velocities of skeletal muscle fibers in the presence of the myosin inhibitor blebbistatin. J Musc Res Cell Motil 30:17–27

    CAS  Google Scholar 

  • Stull JT, Kamm C, Vandenboom R (2011) Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle. Arch Biochem Biophys 510:120–128

    PubMed  CAS  Google Scholar 

  • Sweeney HL, Kushmerick MJ (1985) Myosin phosphorylation in permeabilized rabbit psoas fibers. Am J Physiol 249(3 Pt 1):C362–C365

    PubMed  CAS  Google Scholar 

  • Sweeney HL, Stull JT (1986) Phosphorylation of myosin in permeabilized mammalian cardiac and skeletal muscle cells. Am J Physiol 250(4 Pt 1):657–660

    Google Scholar 

  • Sweeney HL, Stull JT (1990) Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: Implications for regulation of actin-myosin interaction. Proc Natl Acad Sci USA 87:414–418

    PubMed  CAS  Google Scholar 

  • Sweeney HL, Bowman BF, Stull JT (1993) Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol 264:1085–1095

    Google Scholar 

  • Sweeney HL, Yang Z, Zhi G, Stull JT, Trybus KM (1994) Charge replacement near the phosphorylatable serine of the myosin regulatory light chain mimics aspects of phosphorylation. Proc Natl Acad Sci USA 91:1490–1494

    PubMed  CAS  Google Scholar 

  • Szczesna D, Zhao J, Jones M, Zhi G, Stull J, Potter JD (2002) Phosphorylation of the regulatory light chains of myosin affects Ca2+ sensitivity of skeletal muscle contraction. J Appl Physiol 92(4):1661–1670

    PubMed  CAS  Google Scholar 

  • Tohtong R, Yamashita H, Graham M, Haeberle J, Simcox A, Maughan D (1995) Impairment of muscle function caused by mutations of phosphorylation sites in myosin regulatory light chain. Nature 374(6523):650–653

    PubMed  CAS  Google Scholar 

  • Totsuka Y, Nagao Y, Horii T, Yonekawa H, Imai H, Hatta H, Izaike Y, Tokunaga T, Atomi Y (2003) Physical performance and soleus muscle fiber composition in wild-derived and laboratory inbred mouse strains. J Appl Physiol 95(2):720–727

    PubMed  Google Scholar 

  • Trybus KM (1994) Role of myosin light chains. J Musc Res Cell Motil 15(6):587–594

    CAS  Google Scholar 

  • Tubman LA, MacIntosh BR, Maki WA (1996a) Myosin light chain phosphorylation and posttetanic potentiation in fatigued skeletal muscle. Pflugers Arch 431(6):882–887

    PubMed  CAS  Google Scholar 

  • Tubman LA, Rassier DE, MacIntosh BR (1996b) Absence of myosin light chain phosphorylation and twitch potentiation in atrophied skeletal muscle. Can J Physiol Pharmacol 74(6):723–728

    PubMed  CAS  Google Scholar 

  • Tubman LA, Rassier DE, MacIntosh BR (1997) Attenuation of myosin light chain phosphorylation and posttetanic potentiation in atrophied skeletal muscle. Pflugers Arch 434(6):848–851

    PubMed  CAS  Google Scholar 

  • Vale RD, Milligan RA (2000) The way things move: looking under the hood of molecular motor proteins. Science 288(5463):88–95

    PubMed  CAS  Google Scholar 

  • Vandenboom R, Houston ME (1996) Phosphorylation of myosin and twitch potentiation in fatigued skeletal muscle. Can J Physiol Pharmacol 74(12):1315–1321

    PubMed  CAS  Google Scholar 

  • Vandenboom R, Grange RW, Houston ME (1993) Threshold for force potentiation associated with skeletal myosin phosphorylation. Am J Physiol 265:1456–1462

    Google Scholar 

  • Vandenboom R, Grange RW, Houston ME (1995) Myosin phosphorylation enhances rate of force development in fast-twitch skeletal muscle. Am J Physiol 268:596–603

    Google Scholar 

  • Vandenboom R, Xeni J, Bestic M, Houston ME (1997) Increased force development rates of fatigued skeletal muscle are graded to myosin light chain phosphate content. Am J Physiol 272:1980–1984

    Google Scholar 

  • Vergara JL, Rapoprot SI, Nassar-Gentina V (1977) Fatigue and posttetanic potentiation in single muscle fibers of the frog. Am J Physiol 232(5):185–190

    Google Scholar 

  • Walker SM (1948) Action potentials in rat muscle with twitch tension potentiated by KCI treatment, adrenalectomy, tetanus and treppe. Am J Physiol 154(1):63–72

    PubMed  CAS  Google Scholar 

  • Woodhead JL, Zhao FQ, Craig R, Egelman EH, Alamo L, Padrón R (2005) Atomic model of a myosin filament in the relaxed state. Nature 436(7054):1195–1199

    PubMed  CAS  Google Scholar 

  • Xeni J, Gittings W, Caterini D, Huang J, Houston ME, Grange RW, Vandenboom R (2011) Myosin light chain phosphorylation and potentiation of dynamic function in mouse fast muscle. Pflugers Archiv 362:349–358

    Google Scholar 

  • Yang Z, Stull JT, Levine RJ, Sweeney HL (1998) Changes in interfilament spacing mimic the effects of myosin regulatory light chain phosphorylation in rabbit psoas fibers. J Struct Biol 122:139–148

    PubMed  CAS  Google Scholar 

  • Zhao FQ, Craig R, Woodhead JL (2009) Head-head interaction characterizes the relaxed state of Limulus muscle myosin filaments. J Mol Biol 385(2):423–431

    PubMed  CAS  Google Scholar 

  • Zhi G, Ryder JW, Huang J, Ding P, Chen Y, Zhao Y, Kamm KE, Stull JT (2005) Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction. Proc Natl Acad Sci USA 102:17519–17524

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in our lab supported by the Natural Sciences and Engineering Research Council of Canada (RV) (2008–2013). The important contribution of Jian Huang to these studies is also gratefully acknowledged.

Conflict of interest

The authors do not have any conflicting interests regarding the findings or interpretations of findings reviewed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Vandenboom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandenboom, R., Gittings, W., Smith, I.C. et al. Myosin phosphorylation and force potentiation in skeletal muscle: evidence from animal models. J Muscle Res Cell Motil 34, 317–332 (2013). https://doi.org/10.1007/s10974-013-9363-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-013-9363-8

Keywords

Navigation