Skip to main content

Advertisement

Log in

Studies of the Effects of Central Administration of β-Amyloid Peptide (25–35): Pathomorphological Changes in the Hippocampus and Impairment of Spatial Memory

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The possible link between amnesia induced by central administration of β-amyloid (25–35) (Aβ(25–35)) and neurodegenerative changes in the hippocampus was studied. Male Wistar rats received single intracerebroventricular injections of Aβ(25–35) at a dose of 15 nmoles and one month later were trained in an eight-arm radial maze. Training was followed by histological assessment of the state of the hippocampus on brain sections stained with hematoxylin and eosin. Aβ(25–35) induced impairments in long-term (reference) and working memory on testing in the maze. There was a moderate reduction in the number of neurons in hippocampal field CA1; there was no change in the number of cells in field CA3. The numbers of errors made by the animals on testing in the maze were found to correlate negatively with the numbers of nerve cells in hippocampal field CA1. Thus, this is the first demonstration that impairments of learning and memory induced by single doses of Aβ(25–35) are specifically associated with neurodegenerative changes in hippocampal field CA1 in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. O. S. Vinogradova, The Hippocampus and Memory [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  2. P. V. Simonov, The Motivated Brain [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  3. E. N. Sokolov, N. I. Nezlina, V. B. Polyanskii, and D. V. Evtikhin, “The orientational reflex: the targeting reflex’ and the ‘projector of attention,’” Zh. Vyssh. Nerv. Deyat., 51, No.4, 421–437 (2001).

    CAS  Google Scholar 

  4. M. Yu. Stepanovich, N. A. Lazareva, M. V. Onufriev, O. S. Mitrokhina, Yu. V. Moiseeva, and N. V. Gulyaeva, “Effects of administration of fragment (25–35) of beta-amyloid peptide on behavior in rats,” Zh. Vyssh. Nerv. Deyat., 47, No.3, 597–600 (1997).

    Google Scholar 

  5. M. Yu. Stepanovich, Yu. V. Moiseeva, and N. V. Gulyaeva, “‘Injection’ models of Alzheimer's disease: oxidative stress in the mechanism of toxicity of AF64 and β-amyloid peptide in rodents,” Neirokhimiya, 19, No.3, 165–175 (2002).

    Google Scholar 

  6. M. Yu. Stepanichev, N. V. Onufriev, O. S. Mitrokhina, Yu. V. Moiseeva, N. A. Lazareva, I. V. Viktorov, and N. V. Gulyaeva, “Neurochemical, behavioral and neuromorphological effects of central administration of beta-amyloid peptide (25–35) in rats,” Neirokhimiya, 17, No.4, 291–306 (2000).

    Google Scholar 

  7. E. Abe, F. Casamenti, L. Giovanelli, S. Scali, and G. Pepeu, “Administration of amyloid beta-peptides into the medial septum on rats decreases acetylcholine releaser from hippocampus in vivo,” Brain Res., 636, 162–164 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. A. Baddeley, “The fractionation of working memory,” Proc. Natl. Acad. Sci. USA, 93, 13468–13472 (1993).

    Google Scholar 

  9. H. Braak and E. Braak, “Neuropathological staging of Alzheimer-related changes,” Acta Neuropathol., 82, 239–259 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. S. Delobette, A. Privat, and T. Maurice, “In vitro aggregation facilitates beta-amyloid peptide (25–35)-induced amnesia in the rat,” Eur. J. Pharmacol., 319, 1–4 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. L. E. Jarrard, “What does the hippocampus really do?” Behav. Brain Res., 71, 1–10 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. R. Katzman, “Epidemiology of Alzheimer's disease,” Neurobiol. Aging, 21, 51–56 (2000).

    Article  Google Scholar 

  13. Y. Kiyota, M. Miyamoto, and A. Nagaoka, “Relationship between brain damage and memory impairment in rats exposed to transient ischemia,” Brain Res., 538, 295–302 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. T. Maurice, B. P. Lockhart, and A. Privat, “Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction,” Brain Res., 706, 181–193 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. M. P. McDonald and Y. B. Overmeier, “Present imperfect: a critical review of animal models of mnemonic impairments in Alzheimer's disease,” Neurosci. Biobehav. Rev., 22, 99–120 (1998).

    PubMed  CAS  Google Scholar 

  16. S. Nakamura, M. Murayama, T. Noshita, H. Annoura, and T. Ohno, “Progressive brain dysfunction following intracerebroventricular infusion of beta1-42-amyloid peptide,” Brain Res., 912, 128–136 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. A. Nelson, A. Lebessi, P. Sowinski, and H. Hodges, “Comparison of effects of global cerebral ischaemia on spatial earning in the standard and radial water maze: relationship of hippocampal damage to performance,” Behav. Brain Res., 85, 93–115 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. A. Nitta, A. Iton, T. Hasegawa, and T. Nabeshima, “β-Amyloid-protein-induced Alzheimer's disease animal model,” Neurosci. Lett., 28, 63–66 (1994).

    Google Scholar 

  19. J. A. Nunn, E. LePeillet, C. A. Netto, H. Hodges, J. A. Gray, and B. S. Meldrum, “Global ischemia: hippocampal pathology and spatial deficits in the water maze,” Behav. Brain Res., 62, 41–54 (1994).

    PubMed  CAS  Google Scholar 

  20. A. Olariu, M. H. Tran, K. Yamada, M. Mizuno, V. Hefco, and T. Nabashima, “Memory deficits and increased emotionality induced by β-amyloid (25–35) are correlated with the reduced acetylcholine release and altered phorbol dibutyrate binding in the hippocampus,” J. Neural. Transm., 108, 1065–1079 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. G. M. Olsen, J. Scheel-Kruger, A. Moller, and L. H. Jensen, “Relation of spatial learning of rats in the Morris water maze task to the number of viable CA1 neurons following four-vessel occlusion,” Behav. Neurosci., 108, 681–690 (1994).

    Article  PubMed  CAS  Google Scholar 

  22. S. O'Mahony, T. Harkany, A. A. M. Rensink, I. Abraham, G. I. De Jong, J. L. Varga, M. Zarandi, B. Penke, C. Nyakas, P. G. Luiten, and B. E. Leonard, “β-Amyloid-induced cholinergic denervation correlates with enhanced nitric oxide synthase activity in rat cerebral cortex,: Reversal by NMDA receptor blockade,” Brain Res. Bull., 45, 405–411 (1998).

    Article  PubMed  Google Scholar 

  23. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, Sydney (1982).

    Google Scholar 

  24. R. Schopke, D. P. Wolfe, H. P. Lipp, and M. C. Leisinger-Trigona, “Swimming navigation and structural variations of the infrapyramidal mossy fibres in the hippocampus of the mouse,” Hippocampus, 1, 315–328 (1991).

    PubMed  CAS  Google Scholar 

  25. H. Schwegler and W. E. Crusio, “Correlations between radial-maze learning and structural variations of septum and hippocampus in rodents,” Behav. Brain Res., 67, 29–41 (1995).

    Article  PubMed  CAS  Google Scholar 

  26. H. Schwegler, G. G. Mueller, W. E. Crusio, L. Szemes, and L. Seress, “Hippocampal morphology and spatially related behavior in Long-Evans and CFY rats,” Hippocampus, 3, 1–7 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiol. Rev., 81, 741–766 (2001).

    PubMed  CAS  Google Scholar 

  28. E. Shimizu, Y.-P. Tang, C. Rampon, and J. Tsien, “NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation,” Science, 290, 1170–1174 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. L. R. Squire and S. Zola-Morgan, “Memory: brain systems and behavior,” Trends Neurosci., 11, 170–175 (1988).

    Article  PubMed  CAS  Google Scholar 

  30. M. Yu. Stepanichev, O. S. Mitrokhina, I. V. Viktorov, Yu. V. Moiseeva, N. A. Lazareva, M. V. Onufriev, and N. V. Gulyaeva, “β-Amyloid (25–35) induces impairment of working but not reference memory accompanied by neurodegeneration in rat brain,” in: Memory and Emotion, P. Calabrese and A. Neugebauer (eds.), World Sci., Singapore, New Jersey, London, Hong Kong (2002), pp. 445–452.

    Google Scholar 

  31. M. Yu. Stepanichev, Yu. V. Moiseeva, N. A. Lazareva, M. V. Onufriev, and N. V. Gulyaeva, “Single intracerebroventricular administration of amyloid beta (25–35) peptide induces impairment in short-term rather than long-term memory in rats,” Brain Res. Bull., 61, 197–205 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. M. K. Sun and D. L. Alkon, “Impairment of hippocampal CA1 heterosynaptic transformation and spatial memory by beta-amyloid (25–35),” J. Neurophysiol., 87, 2441–2449 (2002).

    PubMed  CAS  Google Scholar 

  33. O. S. Vinogradova, “Hippocampus as comparator: role of two input and two output systems of the hippocampus in selection and registration of information,” Hippocampus, 11, 578–598 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. B. T. Volpe, H. P. Davis, A. Towle, and W. P. Dunlap, “Loss of hippocampal CA1 pyramidal neurons correlates with memory impairment in rats with ischemic or neurotoxic lesions,” Behav. Neurosci., 106, 457–464 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. H. Wang, C. Chou, J. Liao, and C. Chen, “Dehydroevodiamine attenuates β-amyloid peptide-induced amnesia in mice,” Eur. J. Pharmacol., 413, 221–225 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. G. M. Wittenberg and G. Z. Tsien, “An emerging molecular and cellular framework for memory processing by the hippocampus,” Trends Neurosci., 25, 501–505 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. Y. Yamaguchi and S. Kawashima, “Effects of amyloid-β-(25–35) on passive avoidance, radial-arm maze learning, and choline acetyltransferase activity in the rat,” Eur. J. Pharmacol., 412, 265–272 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. B. A. Yanker, L. K. Duffy, and D. A. Kirshner, “Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides,” Science, 250, 279–282 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti imeni I. P. Pavlova, Vol. 54, No. 5, pp. 705–711, September–October, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepanichev, M.Y., Zdobnova, I.M., Zarubenko, I.I. et al. Studies of the Effects of Central Administration of β-Amyloid Peptide (25–35): Pathomorphological Changes in the Hippocampus and Impairment of Spatial Memory. Neurosci Behav Physiol 36, 101–106 (2006). https://doi.org/10.1007/s11055-005-0167-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0167-1

Key Words

Navigation