Skip to main content
Log in

Structural organization, neurochemical characteristics, and connections of the reticular nucleus of the thalamus

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

This review analyzes current concepts of the structural organization and ultrastructure of the reticular nucleus of the thalamus (RNT) and the neurochemical characteristics of its neurons. The topography, cytoarchitectonics, and neuronal organization of this nucleus are considered in detail, as are questions of its neurogenesis. Neurochemical data clarifying the representation of neurotransmitter systems in the RNT and data on neuropeptides synthesized in its neurons are systematized. The complex ultrastructural organization of the RNT is characterized in terms of recent data from state-of-the-art immunocytochemical methods allowing localization of glutamatergic and GABAergic receptors on synaptic elements. Data on the afferent and efferent connections of the RNT demonstrate its influences on various parts of the brain and the specific features of its interactions with cortical formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. G. Andreeva and D. K. Obukhov, Evolutionary Morphology of the Vertebrate Nervous System [in Russian], Lan’, St. Petersburg (1999).

    Google Scholar 

  2. L. A. Berezhnaya, “NADPH-diaphorase-positive nuclei in the thalamus and internal capsule in humans,” Morfologiya, 125, No. 1, 16–22 (2004).

    Google Scholar 

  3. Yu. G. Kratin and T. S. Sotnichenko, Non-Specific Brain Systems [in Russian], Nauka, Leningrad (1987).

    Google Scholar 

  4. M. M. Kurepina, The Brains of Animals [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  5. T. A. Leontovich, Neuronal Organization of the Subcortical Formations of the Forebrain [in Russian], Meditsina, Moscow (1976).

    Google Scholar 

  6. H. K. M. Merren, E. L. J. M. van Luijtelaar, F. H. Lopes da Silva, et al., “The corticothalamic theory of the origin of generalized peakwave discharges,” Usp. Fiziol. Nauk., 35, No. 1, 3–19 (2004).

    Google Scholar 

  7. D. V. Nagaeva, A. V. Akhmadeev, and L. B. Kalimullina, “Characteristics of small neurons of the reticular nucleus of the thalamus in WAG/Rij rats,” Morfologiya, 127, No. 1, 55–57 (2005).

    Google Scholar 

  8. D. V. Nagaeva, A. V. Akhmadeeva, and L. B. Kalimullina, “Characteristics of intracellular contacts in the reticular nucleus of the thalamus in WAG/Rij rats,” Ros. Fiziol. Zh., 91, No. 6, 78–80 (2005).

    Google Scholar 

  9. D. V. Nagaeva, A. V. Akhmadeev, and L. B. Kalimullina, “Characteristics of the ultrastructure of neurons of the reticular nucleus of the thalamus in WAG/Rij rats,” Tsitologiya, 47, No. 6, 487–493 (2005).

    CAS  Google Scholar 

  10. A. V. Akhmadeev, D. V. Nagaeva, M. C. van de Bovenkamp-Janseen, et al., “Infrastructure of the reticular thalamic nucleus of the WAG/Rij rats,” in: The WAG/Rij Model of Absence Epilepsy: The Nijmegen-Russian Federation Papers, Nijmegen (Netherlands), Nijmegen Institute for Cognition and Information, pp. 89–97 (2004).

    Google Scholar 

  11. J. Altman and S. A. Bayer, “Development of the rat thalamus: I. Mosaic organization of the thalamic neuroepithelium,” J. Comp. Neurol., 275, No. 3, 346–377 (1988).

    Article  PubMed  CAS  Google Scholar 

  12. J. Altman and S. A. Bayer, “Development of the rat thalamus: III. Time and site of origin and settling pattern of neurons of the reticular nucleus,” J. Comp. Neurol., 275, No. 3, 406–428 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. A. Amadeo, B. Ortino, and C. Frassoni, “Parvalbumin and GABA in the developing somatosensory thalamus of the rat: an immunocytochemical ultrastructural correlation,” Anat. Embryol. (Berl.), 203, No. 2, 109–119 (2001).

    Article  Google Scholar 

  14. A. Angel, “The G. L. Brown lecture. Adventures in anaesthesia,” Exptl. Physiol., 76, No. 1, 1–38 (1991).

    CAS  Google Scholar 

  15. P. Arnault and M. Roger, “Ventral temporal cortex in the rat: connections of secondary auditory areas Te2 and Te3,” J. Comp. Neurol., 302, No. 1, 110–123 (1990).

    Article  PubMed  CAS  Google Scholar 

  16. C. Asanuma, “Noradrenergic innervation of the thalamic reticular nucleus: a light and electron microscopic immunohistochemical study in rats,” J. Comp. Neurol., 319, No. 2, 299–311 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. S. E. Asmus and S. W. Newman, “Tyrosine hydroxylase mRNA-containing neurons in the medial amygdaloid nucleus and the reticular nucleus of the thalamus in the Syrian hamster,” Brain Res. Mol. Brain Res., 20, No. 3, 267–273 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. F. Baldino, S. Fitzpatrick-McElligott, I. Gozes, and J. P. Card, “Localization of VIP and PHI-27 messenger RNA in rat thalamic and cortical neurons,” J. Mol. Neurosci., 1, No. 4, 199–207 (1989).

    PubMed  CAS  Google Scholar 

  19. G. Battaglia, C. Lizier, C. Colacitti, et al., “A reticuloreticular commissural pathway in the rat thalamus,” J. Comp. Neurol., 347, No. 1, 127–138 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. D. J. Berry, P. T. Ohara, G. Jeffery, and A. R. Liberman, “Are there connections between the thalamic reticular nucleus and the brainstem reticular formation?” J. Comp. Neurol., 243, No. 3, 347–362 (1986).

    Article  PubMed  CAS  Google Scholar 

  21. S. de Biasi, A. Amadeo, P. Arcelli, et al., “Postnatal development of GABA-immunoreactive terminals in the reticular and ventrobasal nuclei of the rat thalamus: a light and electron microscopic study,” Neurosci., 76, No. 2, 503–515 (1997).

    Article  Google Scholar 

  22. S. de Biasi and R. Spreafico, “Parvalbumin immunoreactivity in the thalamus of guinea pig: light and electron microscopic correlation with gamma-aminobutyric acid immunoreactivity,” J. Comp. Neurol., 348, No. 4, 556–569 (1994).

    Article  PubMed  Google Scholar 

  23. S. de Biasi, C. Frassoni, and R. Spreafico, “GABA immunoreactivity in the thalamic reticular nucleus of the rat. A light and electron microscopical study,” Brain Res., 399, No. 1, 143–147 (1986).

    Article  PubMed  Google Scholar 

  24. M. C. van de Bovenkamp-Janssen, A. V. Akhmadeev, D. V. Nagaeva, et al., “Synaptology of the rostral reticular thalamic nucleus of absence epileptic WAG/Rij rats,” Neurosci. Res., 48, 21–31 (2004).

    Article  PubMed  Google Scholar 

  25. M. C. van de Bovenkamp-Janssen, W. J. Scheenen, F. J. Kuipers-Kwant, et al., “Differential expression of high voltage-activated Ca2+ channel types in the rostral reticular thalamic nucleus of the absence epileptic WAG/Rij rat,” J. Neurobiol., 58, No. 4, 467–478 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. J. Brunton and S. Charpak, “Heterogeneity of cell firing properties and opioid sensitivity in the thalamic reticular nucleus,” Neurosci., 78, No. 2, 303–307 (1997).

    Article  CAS  Google Scholar 

  27. E. Budinger, P. Heil, and H. Scheich, “Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). IV. Connections with anatomically characterized subcortical structures,” Eur. J. Neurosci., 12, No. 7, 2452–2474 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. J. M. Burgunder, B. Heyberger, and T. Lauterberg, “Thalamic reticular nucleus parcellation delineated by VIP and TRH gene expression in the rat,” J. Chem. Neuroanat., 17, No. 3, 147–152 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. S. Cavdar, Y. O. Filiz, H. R. Yananli, et al., “Cerebellar connections to the rostral reticular nucleus of the thalamus in the rat,” J. Anat., 201, No. 6, 485–491 (2002).

    Article  PubMed  Google Scholar 

  30. S. Chen, V. Raos, and M. Bentivoglio, “Connections of the thalamic reticular nucleus with the contralateral thalamus in the rat,” Neurosci. Lett., 147, 85–88 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. A. E. Clemence and J. Mitrofanis, “Cytoarchitectonic heterogeneities in the thalamic reticular nucleus of cats and ferrets,” J. Comp. Neurol., 322, No. 2, 167–180 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. J. Cornwall, J. D. Cooper, and O. T. Philipson, “Projections to the rostral reticular thalamic nucleus in the rat,” Exptl. Brain Res., 80, No. 1, 157–171 (1990).

    CAS  Google Scholar 

  33. M. Cossette, M. Levesque, and A. Parent, “Extrastriatal dopaminergic innervation of human basal ganglia,” Neurosci. Res., 34, No. 1, 51–54 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. C. L. Cox and S. M. Sherman, “Glutamate inhibits thalamic reticular neurons,” J. Neurosci., 19, No. 15, 6694–6699 (1999).

    PubMed  CAS  Google Scholar 

  35. J. W. Crabtree, G. L. Collingridge, and J. T. Isaac, “A new intrathalamic pathway linking modality-related nuclei in the dorsal thalamus,” Nat. Neurosci., 1, No. 5, 389–394 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. B. Csillik, A. Palfi, K. Gulya, et al., “Somato-dendritic synapses in the nucleus reticularis thalami of the rat,” Acta Biol. Hung., 53, No. 1–2, 33–41 (2002).

    PubMed  CAS  Google Scholar 

  37. M. de Curtis, R. de Spreafico, and G. Avanzini, “Excitatory amino acid mediate responses elicited in vitro by stimulation of cortical afferents to reticular thalami neurons in the rat,” Neurosci., 33, 275–284 (1989).

    Article  Google Scholar 

  38. A. Destexhe, D. Contreras, T. Sejnowski, and M. Steriade, “Modelling the control of reticular thalamic oscillations by neuromodulators,” Neuroreport, 5, 2217–2220 (1994).

    PubMed  CAS  Google Scholar 

  39. C. Frassoni, R. Spreafico, and R. Battaglia, “Afferent and efferent connections of the nucleus reticularis thalami in the cat and monkey,” J. Neurosci., 18, S51 (1984).

    Google Scholar 

  40. J. A. Gandia, S. de las Heras, M. Garcia, and J. M. Gimenez-Amaya, “Afferent projections to the reticular thalamic nucleus from the globus pallidus and the substantia nigra in the rat,” Brain Res. Bull., 32, No. 4, 351–358 (1993).

    Article  PubMed  CAS  Google Scholar 

  41. A. Gonzalo-Ruiz and A. R. Lieberman, “GABAergic projections from the thalamic reticular nucleus to the anteroventral and anterodorsal thalamic nuclei of the rat,” J. Chem. Neuroanat., 9, No. 3, 165–174 (1995).

    Article  PubMed  CAS  Google Scholar 

  42. A. Gonzalo-Ruiz, J. M. Sanz, and A. R. Lieberman, “Immunohistochemical studies of localization and co-localization of glutamate, aspartate and GABA in the anterior thalamic nuclei, retrosplenial granular cortex, thalamic reticular nucleus and mammillary nuclei of the rat,” J. Chem. Neuroanat., 12, No. 2, 77–84 (1996).

    Article  PubMed  CAS  Google Scholar 

  43. J. W. Crabtree, “Evidence for topographic maps within the visual and somatosensory sectors of the thalamic reticular nucleus: A comparison of cat and rabbit,” Neurosci. Abstr., 15, 1393 (1989).

    Google Scholar 

  44. R. W. Guillery, S. L. Feig, and D. A. Lozsadi, “Paying attention to the thalamic reticular nucleus,” Trends Neurosci., 21, No. 1, 28–32 (1998).

    Article  PubMed  CAS  Google Scholar 

  45. R. W. Guillery and J. K. Harting, “Structure and connections of the thalamic reticular nucleus: Advancing views over half a century,” J. Comp. Neurol., 463, No. 4, 360–371 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. A. E. Hallanger and B. H. Wainer, “Ultrastructure of ChAT-immunoreactive synaptic terminals in the thalamic reticular nucleus of the rat,” J. Comp. Neurol., 278, No. 4, 486–497 (1988).

    Article  PubMed  CAS  Google Scholar 

  47. R. M. Harris, “Axon collaterals in the thalamic reticular nucleus from thalamocortical neurons of the rat ventrobasal thalamus,” J. Comp. Neurol., 258, No. 3, 397–406 (1987).

    Article  PubMed  CAS  Google Scholar 

  48. M. Hazama, A. Kimura, T. Donishi, et al., “Topography of corticothalamic projections from the auditory cortex of the rat,” Neurosci., 124, No. 3, 655–667 (2004).

    Article  CAS  Google Scholar 

  49. O. Hermanson, M. Hallbeck, and A. Blomqvist, “Preproenkephalin mRNA-expressing neurons in the rat thalamus,” Neuroreport, 6, 833–836 (1995).

    Article  PubMed  CAS  Google Scholar 

  50. C. R. Houser, J. E. Vaughn, R. P. Barber, and E. Roberts, “GABA neurons are the major cell type of the nucleus reticularis thalami,” Brain Res., 200, 341–354 (1980).

    Article  PubMed  CAS  Google Scholar 

  51. Q. Huang, D. Zhou, K. Chase, et al., “Immunohistochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre-and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus,” Proc. Natl. Acad. Sci. USA, 89, No. 24, 11988–11992 (1992).

    Google Scholar 

  52. H. H. Jasper, “Diffuse projection systems: The integrative action of the thalamic reticular system,” EEG Clin. Neurophysiol., 1, 405–420 (1949).

    CAS  Google Scholar 

  53. E. G. Jones, “Some aspects of the organization of the thalamic reticular complex,” J. Comp. Neurol., 162, No. 3, 285–308 (1975).

    Article  PubMed  CAS  Google Scholar 

  54. E. G. Jones, “The ventral thalamus,” in: The Thalamus, Plenum Press, N.Y. (1985), pp. 701–720.

  55. E. G. Jones, “Thalamic organization and function after Cajal,” Progr. Brain Res., 136, 333–357 (2002).

    Article  CAS  Google Scholar 

  56. A. Jourdain, K. Semba, and H. C. Fibiger, “Basal forebrain and mesopontine tegmental projections to the reticular thalamic nucleus: an axonal collateralization and immunohistochemical study in the rat,” Brain Res., 505, 55–65 (1989).

    Article  PubMed  CAS  Google Scholar 

  57. T. Kaneko, K. Tashiro, T. Sugimoto, et al., “Identification of thalamic neurons with vasoactive intestinal polypeptide-like immunoreactivity in the rat,” Brain Res., 347, No. 2, 390–393 (1985).

    Article  PubMed  CAS  Google Scholar 

  58. Z. U. Khan, A. Gutierrez, R. Martin, et al., “Differential regional and cellular distribution of dopamine D2-like receptors: an immunocytochemical study of subtype-specific antibodies in rat and human brain,” J. Comp. Neurol., 402, No. 3, 353–371 (1998).

    Article  PubMed  CAS  Google Scholar 

  59. C. I. Kolmac and J. Mitrofanis, “Organisation of the reticular thalamic projection to the intralaminar and midline nuclei in rats,” J. Comp. Neurol., 377, No. 2, 165–178 (1997).

    Article  PubMed  CAS  Google Scholar 

  60. C. I. Kolmac and J. Mitrofanis, “Patterns of brainstem projection to the thalamic reticular nucleus,” J. Comp. Neurol., 396, 531–543 (1998).

    Article  PubMed  CAS  Google Scholar 

  61. C. I. Kolmac and J. Mitrofanis, “Organization of the basal forebrain projection to the thalamus in rats,” Neurosci. Lett., 272, No. 3, 151–154 (1999).

    Article  PubMed  CAS  Google Scholar 

  62. C. E. Landisman, M. A. Long, M. Beierlein, et al., “Electrical synapses in the thalamic reticular nucleus,” J. Neurosci., 22, No. 3, 1002–1009 (2002).

    PubMed  CAS  Google Scholar 

  63. W. Lason, B. Przewlocka, “The role of opioid mechanisms in nonconvulsive seizures in VAG/Rij rat,” in: New Leads in Opioid Research, Excerpta Medica, Amsterdam, 1990, pp. 350–352.

  64. W. Lason, B. Przewlocka, G. van Luijtelaar, and A. M. L. Coenen, “Proenkephalin and prodynorphin mRNA level in brain of rats with absence epilepsy,” Neuropeptides, 27, 343–347 (1994).

    Article  PubMed  CAS  Google Scholar 

  65. W. Lason, B. Przewlocka, G. van Luijtelaar, et al., “Endogenous opioid peptides in brain and pituitary of rats with absence epilepsy,” Neuropeptides, 21, 147–152 (1992).

    Article  PubMed  CAS  Google Scholar 

  66. M. Levesque, S. Gagnon, A. Parent, and M. Deschenes, “Axonal arborizations of corticostriatal and corticothalamic fibers arising from the second somatosensory area in the rat,” Cereb. Cortex, 6, No. 6, 759–770 (1996).

    PubMed  CAS  Google Scholar 

  67. X. B. Liu, “Subcellular distribution of AMPA and NMDA receptor subunit immunoreactivity in ventral posterior and reticular nuclei of rat and cat thalamus,” J. Comp. Neurol., 388, No. 4, 587–602 (1997).

    Article  PubMed  CAS  Google Scholar 

  68. X. B. Liu and E. G. Jones, “Predominance of corticothalamic synaptic inputs to thalamic reticular nucleus neurons in the rat,” J. Comp. Neurol., 414, No. 1, 67–79 (1999).

    Article  PubMed  CAS  Google Scholar 

  69. M. A. Long, C. E. Landisman, and B. W. Connors, “Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus,” J. Neurosci., 24, No. 2, 341–349 (2004).

    Article  PubMed  CAS  Google Scholar 

  70. D. A. Lozsadi, “Organization of cortical afferents to the rostral, limbic sector of the rat thalamic reticular nucleus,” J. Comp. Neurol., 341, No. 4, 520–533 (1994).

    Article  PubMed  CAS  Google Scholar 

  71. D. A. Lozsadi, “Organization of connections between the thalamic reticular and the anterior thalamic nuclei in the rat,” J. Comp. Neurol., 358, No. 2, 233–246 (1995).

    Article  PubMed  CAS  Google Scholar 

  72. J. Lubke, “Morphology of neurons in the thalamic reticular nucleus (TRN) of mammals as revealed by intracellular injections into fixed brain slices,” J. Comp. Neurol., 329, No. 4, 458–471 (1993).

    Article  PubMed  CAS  Google Scholar 

  73. G. Macchi and C. de Riso, “Recerche sulle connessioni talamocorticalli: Modificazioni strutturali del nucleo reticolare nelle demolizioni corticali sperimentali. (Studio in Cavia cobaya),” Arch. Ital. Anat. Embriol., 59, 431–456 (1954).

    CAS  PubMed  Google Scholar 

  74. C. Matesz, A. Kulik, and T. Bacskai, “Ascending and descending projections of the lateral vestibular nucleus in the frog Rana esculenta,” J. Comp. Neurol., 444, No. 2, 115–128 (2002).

    Article  PubMed  Google Scholar 

  75. J. P. McAllister II and G. D. Das, “Neurogenesis in the epithalamus, dorsal thalamus and ventral thalamus of the rat: an autoradiographic and cytological study,” J. Comp. Neurol., 172, No. 4, 647–686 (1977).

    Article  PubMed  Google Scholar 

  76. K. McAlonan and V. J. Brown, “The thalamic reticular nucleus: more than a sensory nucleus?” Neurosci., 8, No. 4, 302–305 (2002).

    Google Scholar 

  77. E. M. Mineff and R. J. Weinberg, “Differential synaptic distribution of AMPA receptor subunits in the ventral posterior and reticular thalamic nuclei of the rat,” Neurosci., 101, No. 4, 969–982 (2000).

    Article  CAS  Google Scholar 

  78. J. Mitrofanis, K. L. Earle, and B. E. Reese, “Glial organization and chondroitin sulfate proteoglycan expression in the developing thalamus,” J. Neurocytol., 26, No. 2, 83–100 (1997).

    Article  PubMed  CAS  Google Scholar 

  79. E. Munze and H. Weiner, “Das Zwischen-und Mittelhirn des Kaninchens und die Beziehungen dieser Teile zum übrigen Zentralnervensystem, mit besonderer Berücksichtigung der Pyramidenbahn und Schleife,” Monatsschr. Psychiatr. Neurol., 12, 241–279 (1902).

    Article  Google Scholar 

  80. F. Nissl, “Die Kerne des Thalamus beim Kaninchen,” Neurol. Zentralbl., 8, 549–550 (1889).

    Google Scholar 

  81. S. Oda, M. Kuroda, Y. C. Ger, et al., “An ultrastructural study of p75 neurotrophin receptor-immunoreactive fiber terminals in the reticular thalamic nucleus of young rats,” Brain Res., 801, No. 1–2, 116–124 (1998).

    Article  PubMed  CAS  Google Scholar 

  82. P. T. Ohara and A. R. Lieberman, “The thalamic reticular nucleus of the adult rat: experimental anatomical studies,” J. Neurocytol., 14, No. 3, 365–411 (1985).

    Article  PubMed  CAS  Google Scholar 

  83. D. Pinault, Y. Smith, and M. Deschenes, “Dendrodendritic and axoaxonic synapses in the thalamic reticular nucleus of the adult rat,” J. Neurosci., 17, No. 9, 3215–333 (1997).

    PubMed  CAS  Google Scholar 

  84. A. Poremba, Y. Kubota, and M. Gabriel, “Afferent connections of the anterior thalamus in rabbits,” Brain Res. Bull., 33, No. 4, 361–365 (1994).

    Article  PubMed  CAS  Google Scholar 

  85. V. Raos and M. Bentivoglio, “Crosstalk between the two sides of the thalamus through the reticular nucleus: a retrograde and anterograde tracing study in the rat,” J. Comp. Neurol., 332, No. 2, 145–154 (1993).

    Article  PubMed  CAS  Google Scholar 

  86. S. Ramon y Cajal, Histologie du Systeme Nerveux de l’Homme et des Vertebres, Maloine, Paris (1901).

    Google Scholar 

  87. F. Reardon and J. Mitrofanis, “Organisation of the amygdalo-thalamic pathways in rats,” Anat. Embryol. (Berlin), 201, No. 1, 75–84 (2000).

    Article  CAS  Google Scholar 

  88. M. Roger and P. Arnault, “Anatomical study of the connections of the primary auditory area in the rat,” J. Comp. Neurol., 287, No. 3, 339–356 (1989).

    Article  PubMed  CAS  Google Scholar 

  89. J. E. Rose, “The ontogenic development of the rabbit’s diencephalon,” J. Comp. Neurol., 77, 61–129 (1942).

    Article  Google Scholar 

  90. J. E. Rose, “The cortical connections of the reticular complex of the thalamus,” Res. Publ. Assoc. Res. Nerv. Ment. Dis., 30, 454–479 (1952).

    PubMed  CAS  Google Scholar 

  91. J. E. Rose and C. N. Woolsey, “Organization of the mammalian thalamus and its relationships to the cerebral cortex,” EEG Clin. Neurophysiol., 1, 391–403 (1949).

    CAS  Google Scholar 

  92. E. M. Rouiller and E. Welker, “Morphology of corticothalamic terminals arising from the auditory cortex of the rat: a Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing study,” Hear. Res., 56, No. 1–2, 179–190 (1991).

    Article  PubMed  CAS  Google Scholar 

  93. M. K. Sanghera, E. R. Simpson, M. J. McPhaul, et al., “Immunocytochemical distribution of aromatase cytochrome P450 in the rat brain using peptide-generated polyclonal antibodies,” Endocrinology, 129, No. 6, 2834–2844 (1991).

    Article  PubMed  CAS  Google Scholar 

  94. S. F. Sawyer, M. E. Martone, and P.M. Groves, “A GABA immunocytochemical study of rat motor thalamus: light and electron microscopic observations,” Neurosci., 42, No. 1, 103–124 (1991).

    Article  CAS  Google Scholar 

  95. M. E. Scheibel and A. B. Scheibel, “Patterns of organization in specific and nonspecific thalamic fields,” in: The Thalamus, Columbia University Press, New York, London (1966), pp. 13–46.

    Google Scholar 

  96. R. Spreafico, G. Battaglia, and C. Frassoni, “The reticular thalamic nucleus (RTN) of the rat: cytoarchitectural, Golgi, immunocytochemical, and horseradish peroxidase study,” J. Comp. Neurol., 304, No. 3, 478–490 (1991).

    Article  PubMed  CAS  Google Scholar 

  97. R. Spreafico, A. Amadeo, P. Angoscini, et al., “Branching projections from mesopontine nuclei to the nucleus reticularis and related thalamic nuclei: a double labelling study in the rat,” J. Comp. Neurol., 336, No. 4, 481–492 (1993).

    Article  PubMed  CAS  Google Scholar 

  98. J. Stehberg, C. Anun-Goycolea, F. Ceric, and F. Torrealba, “The visceral sector of the thalamic reticular nucleus in the rat,” Neurosci., 106, No. 4, 745–755 (2001).

    Article  CAS  Google Scholar 

  99. M. Steriade and G. Buzsaki, “Parallel activation of thalamic and cortical neurons by brainstem and forebrain cholinergic systems,” in: Brain Cholinergic Systems, Oxford University Press, London (1990), pp. 3–82.

    Google Scholar 

  100. M. Steriade, A. Parent, and J. Hada, “Thalamic projections of nucleus reticularis thalami of cat: A study using retrograde transport of horseradish peroxidase an fluorescent tracers,” J. Comp. Neurol., 229, 531–547 (1984).

    Article  PubMed  CAS  Google Scholar 

  101. R. P. Vertes, G. F. Martin, and R. Waltzer, “An autoradiographic analysis of ascending projections from the medullary reticular formation in the rat,” Neurosci., 19, No. 3, 873–898 (1986).

    Article  CAS  Google Scholar 

  102. L. Vitellaro-Zuccarello, A. Meroni, A. Amadeo, and S. De Basi, “Chondroitin sulfate proteoglycans in the rat thalamus: expression during postnatal development and correlation with calcium-binding proteins in adults,” Cell Tiss. Res., 306, No. 1, 15–26 (2001).

    Article  CAS  Google Scholar 

  103. B. Wang, A. Gonzalo-Ruiz, J. M. Sanz, et al., “Immunoelectron microscopic study of gamma-aminobutyric acid inputs to identified thalamocortical projection neurons in the anterior thalamus of the rat,” Exptl. Brain Res., 126, No. 3, 369–382 (1999).

    Article  CAS  Google Scholar 

  104. E. Welker, P. V. Hoogland, and H. Van der Loos, “Organization of feedback and feedforward projections of the barrel cortex: a PHA-L study in the mouse,” Exptl. Brain Res., 73, No. 2, 411–435 (1988).

    CAS  Google Scholar 

  105. A. M. Williamson, P. T. Ohara, and H. J. Ralston, “Electron microscopic evidence that cortical terminals make direct contact onto cells of the thalamic reticular nucleus in the monkey,” Brain Res., 631, No. 1, 175–179 (1993).

    Article  PubMed  CAS  Google Scholar 

  106. A. M. Williamson, P. T. Ohara, D. D. Ralston, et al., “Analysis of gamma-aminobutyric acidergic synaptic contacts in the thalamic reticular nucleus of the monkey,” J. Comp. Neurol., 349, No. 2, 182–192 (1994).

    Article  PubMed  CAS  Google Scholar 

  107. A. K. Wright, L. Norrie, and G. W. Arbuthnott, “Corticofugal axons from adjacent ‘barrel’ columns of rat somatosensory cortex: cortical and thalamic terminal patterns,” J. Anat., 196, No. 3, 379–390 (2000).

    Article  PubMed  Google Scholar 

  108. C. T. Yen, M. Conley, S. H. Hendry, and E. G. Jones, “The morphology of physiologically identified GABAergic neurons in the somatic sensory part of the thalamic reticular nucleus in the cat,” J. Neurosci., 5, No. 8, 2254–2268 (1985).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Morfologiya, Vol. 128, No. 6, pp. 9–17, November–December, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaeva, D.V., Akhmadeev, A.V. Structural organization, neurochemical characteristics, and connections of the reticular nucleus of the thalamus. Neurosci Behav Physiol 36, 987–995 (2006). https://doi.org/10.1007/s11055-006-0134-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-006-0134-5

Key Words

Navigation