Skip to main content

Advertisement

Log in

Mechanisms of the increase in the permeability of the blood–tumor barrier obtained by combining low-frequency ultrasound irradiation with small-dose bradykinin

  • Laboratory Investigation - Human/animal tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The research was conducted to study the characteristics of the noninvasive, reversible, targeted opening of the blood–brain barrier (BBB) by use of low-frequency ultrasound (LFU) irradiation and the selective opening of the blood–tumor barrier (BTB) by intracarotid infusion of bradykinin (BK) in small-dose, with the objective of exploring maximum opening of the BTB by combining LFU irradiation with BK infusion. Thus, it provides new therapeutic strategies for targeted transport of macromolecular or granular drugs to the brain. By using the rat C6 glioma model it was shown that extravasation of Evans blue (EB) through the BTB was significantly increased by combining LFU irradiation (frequency = 1.0 MHz, power = 12 mW, duration = 20 s) with intracarotid small-dose BK infusion, compared with utilizing the two methods separately. By transmission electron microscopy (TEM) we observed that this combination significantly increased the number of pinocytotic vesicles of brain microvascular endothelial cells (BMECs) in the BTB. An even more significant increase was observed by using RT-PCR, western blot, immunohistochemistry, and immunofluorescence to detect mRNA and changes of expression of the caveolae structure proteins caveolin-1 and caveolin-2 of BMECs. In summary, this research concludes that LFU irradiation and small-dose BK together selectively enhance the permeability of the BTB and increase the number of pinocytic vesicles of BMECs to a maximum. Significant up-regulation of the level of expression of caveolae structure proteins caveolin-1 and caveolin-2 might be the molecular mechanism of the co-enhanced endocytotic transport by BMECs. Thus, this research provides new therapeutic strategies for targeted transport of macromolecular drugs and the design of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Black KL, Ningaraj NS (2004) Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control 11:165–173

    PubMed  Google Scholar 

  2. De Boer AG, Breimer DD (1994) The blood-brain barrier: clinical implications for drug delivery to the brain. J R Coll Physicians Lond 28:502–506

    PubMed  Google Scholar 

  3. Hu G, Place AT, Minshall RD (2008) Regulation of endothelial permeability by Src kinase signaling: vascular leakage versus transcellular transport of drugs and macromolecules. Chem Biol Interact 171:177–189. doi:10.1016/j.cbi.2007.08.006

    Article  PubMed  CAS  Google Scholar 

  4. Gumbleton M, Abulrob AG, Campbell L (2000) Caveolae: an alternative membrane transport compartment. Pharm Res 17:1035–1048. doi:10.1023/A:1026464526074

    Article  PubMed  CAS  Google Scholar 

  5. Anderson RG, Kamen BA, Rothberg KG, Lacey SW (1992) Potocytosis: sequestration and transport of small molecules by caveolae. Science 255:410–411. doi:10.1126/science.1310359

    Article  PubMed  CAS  Google Scholar 

  6. Gumbleton M, Hollins AJ, Omidi Y, Campbell L, Taylor G (2003) Targeting caveolae for vesicular drug transport. J Control Release 87:139–151. doi:10.1016/S0168-3659(02)00358-9

    Article  PubMed  CAS  Google Scholar 

  7. Gumbleton M (2001) Caveolae as potential macromolecule trafficking compartments within calveolar epithelium. Adv Drug Deliv Rev 49:281–300. doi:10.1016/S0169-409X(01)00142-9

    Article  PubMed  CAS  Google Scholar 

  8. Schnitzer JE (2001) Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue-specific drug and gene delivery in vivo. Adv Drug Deliv Rev 49:265–280. doi:10.1016/S0169-409X(01)00141-7

    Article  PubMed  CAS  Google Scholar 

  9. McDannold N, Vykhodtseva N, Hynynen K (2006) Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity. Phys Med Biol 51:793–807. doi:10.1088/0031-9155/51/4/003

    Article  PubMed  CAS  Google Scholar 

  10. Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, Sheikov N (2006) Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg 105:445–454. doi:10.3171/jns.2006.105.3.445

    Article  PubMed  CAS  Google Scholar 

  11. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N (2005) Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 24:12–20. doi:10.1016/j.neuroimage.2004.06.046

    Article  PubMed  Google Scholar 

  12. Inamura T, Black KL (1994) Bradykinin selectively opens blood-tumor barrier in experimental brain tumors. J Cereb Blood Flow Metab 14:862–870

    PubMed  CAS  Google Scholar 

  13. Bartus RT, Snodgrass P, Marsh J, Agostino M, Perkins A, Emerich DF (2000) Intravenous cereport (RMP-7) modifies topographic uptake profile of carboplatin within rat glioma and brain surrounding tumor, elevates platinum levels, and enhances survival. J Pharmacol Exp Ther 293:903–911

    PubMed  CAS  Google Scholar 

  14. Ningaraj NS, Rao M, Hashizume K, Asotra K, Black KL (2002) Regulation of blood-brain tumor barrier permeability by calcium-activated potassium channels. J Pharmacol Exp Ther 301:838–851. doi:10.1124/jpet.301.3.838

    Article  PubMed  CAS  Google Scholar 

  15. Ningaraj NS, Rao MK, Black KL (2003) Adenosine 5-triphosphate-sensitive potassium channel-mediated blood-brain tumor barrier permeability increase in a rat brain tumor model. Cancer Res 63:8899–8911

    PubMed  CAS  Google Scholar 

  16. Liu LB, Xue YX, Liu YH, Wang YB (2008) Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton. J Neurosci Res 86:1153–1168. doi:10.1002/jnr.21558

    Article  PubMed  CAS  Google Scholar 

  17. Krasteva G, Pfeil U, Drab M, Kummer W, König P (2006) Caveolin-1 and -2 in airway epithelium: expression and in situ association as detected by FRET-CLSM. Respir Res 7:108. doi:10.1186/1465-9921-7-108

    Article  PubMed  Google Scholar 

  18. Gu YT, Zhang H, Xue YX (2007) Dexamethasone treatment modulates aquaporin-4 expression after intracerebral hemorrhage in rats. Neurosci Lett 413:126–131. doi:10.1016/j.neulet.2006.11.072

    Article  PubMed  CAS  Google Scholar 

  19. Nag S, Venugopalan R, Stewart DJ (2007) Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown. Acta Neuropathol 114:459–469. doi:10.1007/s00401-007-0274-x

    Article  PubMed  CAS  Google Scholar 

  20. Silva WI, Maldonado HM, Velázquez G, Rubio-Dávila M, Miranda JD, Aquino E, Mayol N, Cruz-Torres A, Jardón J, Salgado-Villanueva IK (2005) Caveolin isoform expression during differentiation of C6 glioma cells. Int J Dev Neurosci 23:599–612. doi:10.1016/j.ijdevneu.2005.07.007

    Article  PubMed  CAS  Google Scholar 

  21. Stan RV (2005) Structure of caveolae. Biochim Biophys Acta 1746:334–348. doi:10.1016/j.bbamcr.2005.08.008

    Article  PubMed  CAS  Google Scholar 

  22. Lajoie P, Nabi IR (2007) Regulation of raft-dependent endocytosis. J Cell Mol Med 11:644–653. doi:10.1111/j.1582-4934.2007.00083.x

    Article  PubMed  CAS  Google Scholar 

  23. Van Helmond ZK, Miners JS, Bednall E, Chalmers KA, Zhang Y, Wilcock GK, Love S, Kehoe PG (2007) Caveolin-1 and -2 and their relationship to cerebral amyloid angiopathy in Alzheimer’s disease. Neuropathol Appl Neurobiol 33:317–327. doi:10.1111/j.1365-2990.2006.00815.x

    Article  PubMed  Google Scholar 

  24. Sowa G, Pypaert M, Fulton D, Sessa WC (2003) The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation. Proc Natl Acad Sci USA 100:6511–6516. doi:10.1073/pnas.1031672100

    Article  PubMed  CAS  Google Scholar 

  25. Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121:901–907. doi:10.1002/ijc.22732

    Article  PubMed  CAS  Google Scholar 

  26. Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006) Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun 340:1085–1090. doi:10.1016/j.bbrc.2005.12.112

    Article  PubMed  CAS  Google Scholar 

  27. Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006) Noninvasive localized delivery of herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proc Natl Acad Sci USA 103:11719–11723. doi:10.1073/pnas.0604318103

    Article  PubMed  CAS  Google Scholar 

  28. Avgeropoulos NG, Batchelor TT (1999) New treatment strategies for malignant gliomas. Oncologist 4:209–224

    PubMed  CAS  Google Scholar 

  29. Juffermans LJ, Kamp O, Dijkmans PA, Visser CA, Musters RJ (2008) Low-intensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK(Ca) channels. Ultrasound Med Biol 34:502–508. doi:10.1016/j.ultrasmedbio.2007.09.010

    Article  PubMed  Google Scholar 

  30. Wunder F, Buehler G, Hüser J, Mundt S, Bechem M, Kalthof B (2007) A cell-based nitric oxide reporter assay useful for the identification and characterization of modulators of the nitric oxide/guanosine 3′, 5′-cyclic monophosphate pathway. Anal Biochem 363:219–227. doi:10.1016/j.ab.2007.02.001

    Article  PubMed  CAS  Google Scholar 

  31. Lin S, Fagan KA, Li KX, Shaul PW, Cooper DM, Rodman DM (2000) Sustained endothelial nitric-oxide synthase activation requires capacitative Ca2+ entry. J Biol Chem 275:17979–17985. doi:10.1074/jbc.275.24.17979

    Article  PubMed  CAS  Google Scholar 

  32. Michel CC (1998) Capillaries, caveolae, calcium and cyclic nucleotides: a new look at microvascular permeability. J Mol Cell Cardiol 30:2541–2546. doi:10.1006/jmcc.1998.0825

    Article  PubMed  CAS  Google Scholar 

  33. Tsukado K, Sugita M, Black K (1998) Intracarotid low dose bradykinin infusion selectively increases tumor permeability through activation of bradykinin B2 receptors in malignant gliomas. Brain Res 792:10–15. doi:10.1016/S0006-8993(97)01502-3

    Article  Google Scholar 

  34. Nakano S, Matsukado K, Black KL (1996) Increased brain tumor microvessel permeability after intracarotid bradykinin infusion is mediated by nitric oxide. Cancer Res 56:4027–4031

    PubMed  CAS  Google Scholar 

  35. Sugita M, Black KL (1998) Cyclic GMP-specific phosphodiesterase inhibition and intracarotid bradykinin infusion enhances permeability into brain tumors. Cancer Res 58:914–920

    PubMed  CAS  Google Scholar 

  36. Hashizume K, Black KL (2002) Increased endothelial vesicular transport correlates with increased blood-tumor barrier permeability induced by bradykinin and leukotriene C4. J Neuropathol Exp Neurol 61:725–735

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Natural Science Foundation of China, under contract nos. 30570650, 30670723, 30700861, and 30872656, the Natural Science Foundation of Liaoning Province, no. 20052102, the special fund for Scientific Research of Doctor-degree Subjects in Colleges and Universities, no. 20050159005, and Shenyang Science and Technology Projects, no. 1072033-1-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-hui Liu.

Additional information

Chun-yi Xia and Zhen Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Cy., Zhang, Z., Xue, Yx. et al. Mechanisms of the increase in the permeability of the blood–tumor barrier obtained by combining low-frequency ultrasound irradiation with small-dose bradykinin. J Neurooncol 94, 41–50 (2009). https://doi.org/10.1007/s11060-009-9812-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-9812-9

Keywords

Navigation