Skip to main content
Log in

Rapid High-Energy Microwave Fixation is Required to Determine the Anandamide (N-arachidonoylethanolamine) Concentration of Rat Brain

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Anandamide (N-arachidonoylethanolamine, AEA) is the putative endogenous ligand for the CB1 receptor. Despite being regulated enzymatically, brain AEA concentrations are quite variable and have been reported to increase in response to ischemia and post-mortem delay. Because these observations are similar to the effects of decapitation on brain concentrations of unesterified arachidonic acid and several of its metabolites, we propose that brain AEA concentrations also increase with decapitation and that immediate head-focused microwave irradiation is necessary to quantify basal brain AEA levels correctly. To test this hypothesis, we measured brain AEA levels in rats that were subjected to head-focused microwave irradiation 5 min. following decapitation (5.5 kW, 3.4 s) (ischemic) and prior to decapitation (controls). Brain AEA concentrations were quantified by LC/MS/MS. AEA concentrations from ischemic animals (10.01 ± 4.41 pmol/g, mean ± SD) were significantly higher and more variable than control concentrations (2.45 ± 0.39 pmol/g). Thus, the basal concentration of AEA in the brain is lower than previously thought and future studies attempting to quantify brain AEA should consider using head-focused microwave fixation to prevent anomalous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AEA:

anandamide, N-arachidonoylethanolamine

NAPE:

N-arachidonoylphoshatidylethanolamine

PE:

phosphatidylethanolamine

FAAH:

fatty acid amide hydrolase

sn:

stereospecifically numbered

References

  1. F. A. Kuehl J. T. A. Jacob O. H. Ganley R. E. Ormond M. A. P. Meisinger (1957) ArticleTitleThe identification of an anti-inflammatory agent present in egg yolk, soybean lecithin and peanut oil J. Am. Chem. Soc 79 5577–5578 Occurrence Handle10.1021/ja01577a066

    Article  Google Scholar 

  2. N. R. Bachur K. Masek K. L. Melmon S. Udenfriend (1965) ArticleTitleFatty acid amides of ethanolamine in mammalian tissues J. Biol. Chem 240 1019–1024 Occurrence Handle14284696

    PubMed  Google Scholar 

  3. W. A. Devane L. Hanus A. Breuer R. G. Pertwee L. A. Stevenson G. Griffin D. Gibson A. Mandelbaum A. Etinger R. Mechoulam (1992) ArticleTitleIsolation and structure of a brain constituent that binds to the cannabinoid receptor Science 258 1946–1949 Occurrence Handle1470919

    PubMed  Google Scholar 

  4. C. C. Felder E. M. Briley J. Axelrod J. T. Simpson K. Mackie W. A. Devane (1993) ArticleTitleAnandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction Proc. Natl. Acad. Sci. U S A 90 7656–7660 Occurrence Handle8395053

    PubMed  Google Scholar 

  5. L. Venance D. Piomelli J. Glowinski C. Giaume (1995) ArticleTitleInhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes Nature 376 590–594 Occurrence Handle10.1038/376590a0 Occurrence Handle7637807

    Article  PubMed  Google Scholar 

  6. R. I. Wilson R. A. Nicoll (2001) ArticleTitleEndogenous cannabinoids mediate retrograde signalling at hippocampal synapses Nature 410 588–592 Occurrence Handle10.1038/35069076 Occurrence Handle11279497

    Article  PubMed  Google Scholar 

  7. G. Marsicano S. Goodenough K. Monory H. Hermann M. Eder A. Cannich S. C. Azad M. G. Cascio S. O. Gutierrez M. Stelt Particlevan der M. L. Lopez-Rodriguez E. Casanova G. Schutz W. Zieglgansberger V. Di Marzo C. Behl B. Lutz (2003) ArticleTitleCB1 cannabinoid receptors and on-demand defense against excitotoxicity Science 302 84–88 Occurrence Handle10.1126/science.1088208 Occurrence Handle14526074

    Article  PubMed  Google Scholar 

  8. H. Cadas E. di Tomaso D. Piomelli (1997) ArticleTitleOccurrence and biosynthesis of endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine, in rat brain J. Neurosci 17 1226–1242 Occurrence Handle9006968

    PubMed  Google Scholar 

  9. H. H. Schmid (2000) ArticleTitlePathways and mechanisms of N- acylethanolamine biosynthesis: can anandamide be generated selectively? Chem. Phys. Lipids 108 71–87 Occurrence Handle10.1016/S0009-3084(00)00188-2 Occurrence Handle11106783

    Article  PubMed  Google Scholar 

  10. Y. X. Sun K. Tsuboi Y. Okamoto T. Tonai M. Murakami I. Kudo N. Ueda (2004) ArticleTitleBiosynthesis of anandamide and N-palmitoylethanolamine by sequential actions of phospholipase A2 and lysophospholipase D Biochem. J 380 749–756 Occurrence Handle10.1042/BJ20040031 Occurrence Handle14998370

    Article  PubMed  Google Scholar 

  11. D. G. Deutsch S. A. Chin (1993) ArticleTitleEnzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist Biochem. Pharmacol 46 791–796 Occurrence Handle10.1016/0006-2952(93)90486-G Occurrence Handle8373432

    Article  PubMed  Google Scholar 

  12. W. A. Devane J. Axelrod (1994) ArticleTitleEnzymatic synthesis of anandamide, an endogenous ligand for the cannabinoid receptor, by brain membranes Proc. Natl. Acad. Sci. USA 91 6698–6701 Occurrence Handle8022836

    PubMed  Google Scholar 

  13. Y. Kurahashi N. Ueda H. Suzuki M. Suzuki S. Yamamoto (1997) ArticleTitleReversible hydrolysis and synthesis of anandamide demonstrated by recombinant rat fatty-acid amide hydrolase Biochem. Biophys. Res. Commun 237 512–515 Occurrence Handle10.1006/bbrc.1997.7180 Occurrence Handle9299394

    Article  PubMed  Google Scholar 

  14. K. Katayama N. Ueda I. Katoh S. Yamamoto (1999) ArticleTitleEquilibrium in the hydrolysis and synthesis of cannabimimetic anandamide demonstrated by a purified enzyme Biochim. Biophys. Acta 1440 205–214 Occurrence Handle10521704

    PubMed  Google Scholar 

  15. A. C. Porter C. C. Felder (2001) ArticleTitleThe endocannabinoid nervous system: unique opportunities for therapeutic intervention Pharmacol. Ther 90 45–60 Occurrence Handle10.1016/S0163-7258(01)00130-9 Occurrence Handle11448725

    Article  PubMed  Google Scholar 

  16. J. Fernandez-Ruiz F. Berrendero M. L. Hernandez J. A. Ramos (2000) ArticleTitleThe endogenous cannabinoid system and brain development Trends Neurosci 23 14–20 Occurrence Handle10.1016/S0166-2236(99)01491-5 Occurrence Handle10631784

    Article  PubMed  Google Scholar 

  17. D. Koga T. Santa T. Fukushima H. Homma K. Imai (1997) ArticleTitleLiquid chromatographic-atmospheric pressure chemical ionization mass spectrometric determination of anandamide and its analogs in rat brain and peripheral tissues J. Chromatogr. B. Biomed. Sci. Appl 690 7–13 Occurrence Handle10.1016/S0378-4347(96)00391-X Occurrence Handle9106024

    Article  PubMed  Google Scholar 

  18. C. C. Felder A. Nielsen E. M. Briley M. Palkovits J. Priller J. Axelrod D. N. Nguyen J. M. Richardson R. M. Riggin G. A. Koppel S. M. Paul G. W. Becker (1996) ArticleTitleIsolation and measurement of the endogenous cannabinoid receptor agonist, anandamide, in brain and peripheral tissues of human and rat FEBS. Lett 393 231–235 Occurrence Handle8814296

    PubMed  Google Scholar 

  19. P. C. Schmid R. J. Krebsbach S. R. Perry T. M. Dettmer J. L. Maasson H. H. Schmid (1995) ArticleTitleOccurrence and postmortem generation of anandamide and other long-chain N-acylethanolamines in mammalian brain FEBS. Lett 375 117–120 Occurrence Handle10.1016/0014-5793(95)01194-J Occurrence Handle7498458

    Article  PubMed  Google Scholar 

  20. K. Kempe F. F. Hsu A. Bohrer J. Turk (1996) ArticleTitleIsotope dilution mass spectrometric measurements indicate that arachidonylethanolamide, the proposed endogenous ligand of the cannabinoid receptor, accumulates in rat brain tissue post mortem but is contained at low levels in or is absent from fresh tissue J. Biol. Chem 271 17287–17295 Occurrence Handle10.1074/jbc.271.29.17287 Occurrence Handle8663381

    Article  PubMed  Google Scholar 

  21. W. R. Schabitz A. Giuffrida C. Berger A. Aschoff M. Schwaninger S. Schwab D. Piomelli (2002) ArticleTitleRelease of fatty acid amides in a patient with hemispheric stroke: a microdialysis study Stroke 33 2112–2114 Occurrence Handle10.1161/01.STR.0000023491.63693.18 Occurrence Handle12154273

    Article  PubMed  Google Scholar 

  22. C. Berger P. C. Schmid W. R. Schabitz M. Wolf S. Schwab H. H. Schmid (2004) ArticleTitleMassive accumulation of N-acylethanolamines after stroke. Cell signalling in acute cerebral ischemia? J. Neurochem 88 1159–1167 Occurrence Handle10.1046/j.1471-4159.2003.02244.x Occurrence Handle15009671

    Article  PubMed  Google Scholar 

  23. S. Muthian D. J. Rademacher C. T. Roelke G. J. Gross C. J. Hillard (2004) ArticleTitleAnandamide content is increased and CB1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemia Neuroscience 129 743–750 Occurrence Handle10.1016/j.neuroscience.2004.08.044 Occurrence Handle15541895

    Article  PubMed  Google Scholar 

  24. N. G. Bazan SuffixJr. (1970) ArticleTitleEffects of ischemia and electroconvulsive shock on free fatty acid pool in the brain Biochim. Biophys. Acta 218 1–10 Occurrence Handle5473492

    PubMed  Google Scholar 

  25. J. Deutsch S. I. Rapoport A. D. Purdon (1997) ArticleTitleRelation between free fatty acid and acyl-CoA concentrations in rat brain following decapitation Neurochem. Res 22 759–765 Occurrence Handle10.1023/A:1022030306359 Occurrence Handle9232626

    Article  PubMed  Google Scholar 

  26. R. F. Anton C. Wallis C. L. Randall (1983) ArticleTitleIn vivo regional levels of PGE and thromboxane in mouse brain: effect of decapitation, focused microwave fixation, and indomethacin Prostaglandins 26 421–429 Occurrence Handle10.1016/0090-6980(83)90177-6 Occurrence Handle6658001

    Article  PubMed  Google Scholar 

  27. E. Bosisio C. Galli G. Galli S. Nicosia C. Spagnuolo L. Tosi (1976) ArticleTitleCorrelation between release of free arachidonic acid and prostaglandin formation in brain cortex and cerebellum Prostaglandins 11 773–781 Occurrence Handle10.1016/0090-6980(76)90186-6 Occurrence Handle935510

    Article  PubMed  Google Scholar 

  28. J. M. Miller R. S. Jope T. N. Ferraro T. A. Hare (1990) ArticleTitleBrain amino acid concentrations in rats killed by decapitation and microwave irradiation J. Neurosci. Methods 31 187–192 Occurrence Handle10.1016/0165-0270(90)90109-S Occurrence Handle2329838

    Article  PubMed  Google Scholar 

  29. J. Deutsch B. Kalderon A. D. Purdon S. I. Rapoport (2000) ArticleTitleEvaluation of brain long-chain acylcarnitines during cerebral ischemia Lipids 35 693–696 Occurrence Handle10901433

    PubMed  Google Scholar 

  30. A. C. Porter J. M. Sauer M. D. Knierman G. W. Becker M. J. Berna J. Bao G. G. Nomikos P. Carter F. P. Bymaster A. B. Leese C. C. Felder (2002) ArticleTitleCharacterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor J. Pharmacol. Exp. Ther 301 1020–1024 Occurrence Handle10.1124/jpet.301.3.1020 Occurrence Handle12023533

    Article  PubMed  Google Scholar 

  31. N. G. Bazan G. Allan E. B. Turco ParticleRodriguez de (1993) ArticleTitleRole of phospholipase A2 and membrane-derived lipid second messengers in membrane function and transcriptional activation of genes: implications in cerebral ischemia and neuronal excitability Prog. Brain Res 96 247–257 Occurrence Handle8332745

    PubMed  Google Scholar 

  32. N. G. Bazan E. B. Rodriguez Turco Particlede G. Allan (1995) ArticleTitleMediators of injury in neurotrauma: intracellular signal transduction and gene expression J. Neurotrauma 12 791–814 Occurrence Handle8594208

    PubMed  Google Scholar 

  33. Patel, S., Carrier, E. J., Ho, W. S., Rademacher, D. J., Cunningham, S., Reddy, D. S., Falck, J. R., Cravatt, B. F., and Hillard, C. J. 2004 The post-mortal accumulation of brain N-arachidonylethanolamine (anandamide) is dependent upon fatty acid amide hydrolase activity. J. Lipid Res

  34. C. S. Breivogel G. Griffin V. Di Marzo B. R. Martin (2001) ArticleTitleEvidence for a new G protein-coupled cannabinoid receptor in mouse brain Mol. Pharmacol 60 155–163 Occurrence Handle11408610

    PubMed  Google Scholar 

  35. M. Egertova D. K. Giang B. F. Cravatt M. R. Elphick (1998) ArticleTitleA new perspective on cannabinoid signalling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain Proc. R. Soc. Lond. B. Biol. Sci 265 2081–2085 Occurrence Handle10.1098/rspb.1998.0543

    Article  Google Scholar 

  36. H. Cadas S. Schinelli D. Piomelli (1996) ArticleTitleMembrane localization of N-acylphosphatidylethanolamine in central neurons: studies with exogenous phospholipases J. Lipid. Mediat. Cell Signal 14 63–70 Occurrence Handle10.1016/0929-7855(96)00510-X Occurrence Handle8906547

    Article  PubMed  Google Scholar 

  37. C. J. Hillard A. Jarrahian (2003) ArticleTitleCellular accumulation of anandamide: consensus and controversy Br. J. Pharmacol 140 802–808 Occurrence Handle10.1038/sj.bjp.0705468 Occurrence Handle12970089

    Article  PubMed  Google Scholar 

  38. C. J. Hillard A. Jarrahian (2000) ArticleTitleThe movement of N-arachidonoylethanolamine (anandamide) across cellular membranes Chem. Phys. Lipids 108 123–134 Occurrence Handle10.1016/S0009-3084(00)00191-2 Occurrence Handle11106786

    Article  PubMed  Google Scholar 

  39. C. J. Hillard W. S. Edgemond A. Jarrahian W. B. Campbell (1997) ArticleTitleAccumulation of N-arachidonoylethanolamine (anandamide) into cerebellar granule cells occurs via facilitated diffusion J. Neurochem 69 631–638 Occurrence Handle9231721

    PubMed  Google Scholar 

  40. T. A. Day F. Rakhshan D. G. Deutsch E. L. Barker (2001) ArticleTitleRole of fatty acid amide hydrolase in the transport of the endogenous cannabinoid anandamide Mol. Pharmacol 59 1369–1375 Occurrence Handle11353795

    PubMed  Google Scholar 

  41. T. Bisogno F. Berrendero G. Ambrosino M. Cebeira J. A. Ramos J. J. Fernandez-Ruiz V. Di Marzo (1999) ArticleTitleBrain regional distribution of endocannabinoids: implications for their biosynthesis and biological function Biochem. Biophys. Res. Commun 256 377–380 Occurrence Handle10.1006/bbrc.1999.0254 Occurrence Handle10079192

    Article  PubMed  Google Scholar 

  42. T. Sugiura S. Kondo A. Sukagawa S. Nakane A. Shinoda K. Itoh A. Yamashita K. Waku (1995) ArticleTitle2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain Biochem. Biophys. Res. Commun 215 89–97 Occurrence Handle10.1006/bbrc.1995.2437 Occurrence Handle7575630

    Article  PubMed  Google Scholar 

  43. L. Hanus S. Abu-Lafi E. Fride A. Breuer Z. Vogel D. E. Shalev I. Kustanovich R. Mechoulam (2001) ArticleTitle 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor Proc. Natl. Acad. Sci. USA 98 3662–3665 Occurrence Handle10.1073/pnas.061029898 Occurrence Handle11259648

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Bazinet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazinet, R.P., Lee, HJ., Felder, C.C. et al. Rapid High-Energy Microwave Fixation is Required to Determine the Anandamide (N-arachidonoylethanolamine) Concentration of Rat Brain. Neurochem Res 30, 597–601 (2005). https://doi.org/10.1007/s11064-005-2746-5

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-005-2746-5

Key words

Navigation