Skip to main content

Advertisement

Log in

Hydrocortisone Enhances the Function of the Blood-Nerve Barrier Through the Up-Regulation of Claudin-5

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In autoimmune disorders of the peripheral nervous system (PNS), including Guillain–Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy, breakdown of the blood-nerve barrier (BNB) has been considered to be a key step in the disease process. Although glucocorticoids (GCs) have been shown to effectively restore the blood–brain barrier (BBB) in some inflammatory central nervous system diseases such as multiple sclerosis, their action against the BNB has not yet been examined. To elucidate the role of GCs on the BNB, we established a novel human immortalized endothelial cell lines derived from the BNB. The established cell line termed “DH-BNBs” expresses two important tight junction proteins, claudin-5 and occludin. Using DH-BNBs, we analyzed how GCs affect BNB function. We herein report that GCs up-regulate the expression of claudin-5 and increase the barrier properties of the BNB. This is the first report which indicates how GCs affect the blood-nerve barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Poduslo JF, Curran GL, Berg CT (1994) Macromolecular permeability across the blood-nerve and blood-brain barriers. Proc Natl Acad Sci USA 91:5705–5709

    Article  PubMed  CAS  Google Scholar 

  2. Bell MA, Weddell AGM (1984) A descriptive study of the blood vessels of the sciatic nerve in the rat, man, and other mammals. Brain 107:871–898

    Article  PubMed  Google Scholar 

  3. Latker CH, Wadhwani KC, Balbo A, Rapoport SI (1991) Blood-nerve barrier in the frog during Wallerian degeneration: Are axons necessary for maintenance of barrier functions? J Comp Neurol 309:650–664

    Article  Google Scholar 

  4. Sano Y, Shimizu F, Nakayama H et al (2007) Endothelial cells constituting blood-nerve barrier have highly specialized characteristics as barrier-forming cells. Cell Struct Funct 32:139–147

    Article  PubMed  CAS  Google Scholar 

  5. Kanda T, Yamawaki M, Iwasaki T et al (2000) Glycosphingolipid antibodies and blood-nerve barrier in autoimmune demyelinative neuropathy. Neurology 54:1459–1464

    PubMed  CAS  Google Scholar 

  6. Kanda T, Numata Y, Mizusawa H (2004) Chronic inflammatory demyelinating polyneuropathy: decreased claudin-5 and relocated ZO-1. J Neurol Neurosurg Psychiatry 75:765–769

    Article  PubMed  CAS  Google Scholar 

  7. Lach B, Rippstein P, Atack D et al (1993) Immunoelectron microscopic localization of monoclonal IgM antibodies in gammopathy associated with peripheral demyelinative neuropathy. Acta Neuropathol 85:298–307

    Article  PubMed  CAS  Google Scholar 

  8. Dyck PJ, O’Brien PC, Oviatt KF et al (1982) Prednisone improves chronic inflammatory demyelinating polyradiculoneuropathy more than no treatment. Ann Neurol 11:136–141

    Article  PubMed  CAS  Google Scholar 

  9. Hughes R, Bensa S, Willison H et al (2001) Randomized controlled trial of intravenous immunoglobulin versus oral prednisolone in chronic inflammatory demyelinating polyradiculoneuropathy. Ann Neurol 50:195–201

    Article  PubMed  CAS  Google Scholar 

  10. Miller DH, Thompson AJ, Morrissey SP et al (1992) High dose steroids in acute relapses of multiple sclerosis: MRI evidence for a possible mechanism of therapeutic effect. J Neurol Neurosurg Psychiatry 55:450–453

    Article  PubMed  CAS  Google Scholar 

  11. Schmidt J, Metselaar JM, Wauben MH et al (2003) Drug targeting by long-circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain 126:1895–1904

    Article  PubMed  Google Scholar 

  12. Förster C, Silwedel C, Golenhofen N et al (2005) Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murine in vitro system. J Physiol 565:475–486

    Article  PubMed  Google Scholar 

  13. Förster C, Burek M, Romero IA et al (2008) Differential effects of hydrocortisone and TNFalpha on tight junction proteins in an in vitro model of the human blood-brain barrier. J Physiol 586:1937–1949

    Article  PubMed  Google Scholar 

  14. Kanda T, Iwasaki T, Yamawaki M et al (1997) Isolation and culture of bovine endothelial cells of endoneurial origin. J Neurosci Res 49:769–777

    Article  PubMed  CAS  Google Scholar 

  15. Furuse M, Hirase T, Itoh M et al (1993) Occludin: A novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  PubMed  CAS  Google Scholar 

  16. Nitta T, Hata M, Gotoh S et al (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  PubMed  CAS  Google Scholar 

  17. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Phamacol Rev 57:173–185

    CAS  Google Scholar 

  18. Hirase T, Staddon JM, Saitou M (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 110:1603–1613

    PubMed  CAS  Google Scholar 

  19. Ohtsuki S, Yamaguchi H, Katsukura Y et al (2008) mRNA expression levels of tight junction protein genes in mouse brain capillary endothelial cells highly purified by magnetic cell sorting. J Neurochem 104:147–154

    PubMed  CAS  Google Scholar 

  20. Ohtsuki S, Sato S, Yamaguchi H et al (2007) Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. J Cell Physiol 210:81–86

    Article  PubMed  CAS  Google Scholar 

  21. Kanda T, Usui S, Beppu H et al (1998) Blood-nerve barrier in IgM paraproteinemic neuropathy: a clinicopathologic assessment. Acta Neuropathol 95:184–192

    Article  PubMed  CAS  Google Scholar 

  22. Meier C, Roberts K, Steck A et al (1984) Polyneuropathy in Waldenström’s macroglobulinaemia: reduction of endoneurial IgM-deposits after treatment with chlorambucil and plasmapheresis. Acta Neuropathol 64:297–307

    Article  PubMed  CAS  Google Scholar 

  23. Köller H, Kieseier BC, Jander S et al (2005) Chronic inflammatory demyelinating polyneuropathy. N Engl J Med 352:1343–1356

    Article  PubMed  Google Scholar 

  24. Vallat JM, Sommer C, Magy L (2010) Chronic inflammatory demyelinating polyradiculoneuropathy: diagnostic and therapeutic challenges for a treatable condition. Lancet Neurol 9:402–412

    Article  PubMed  Google Scholar 

  25. Tuckermann JP, Kleiman A, McPherson KG et al (2005) Molecular mechanisms of glucocorticoids in the control of inflammation and lymphocyte apoptosis. Crit Rev Clin Lab Sci 42:71–104

    Article  PubMed  CAS  Google Scholar 

  26. Heitzer MD, Wolf IM, Sanchez ER et al (2007) Glucocorticoid receptor physiology. Rev Endocr Metab Disord 8:321–330

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Neuroimmunological Disease Research Committee grant from the Ministry of Health, Labour and Welfare, Japan and also by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kanda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashiwamura, Y., Sano, Y., Abe, M. et al. Hydrocortisone Enhances the Function of the Blood-Nerve Barrier Through the Up-Regulation of Claudin-5. Neurochem Res 36, 849–855 (2011). https://doi.org/10.1007/s11064-011-0413-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0413-6

Keywords

Navigation