Skip to main content
Log in

Extracellular K+ and Astrocyte Signaling via Connexin and Pannexin Channels

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes utilize two major pathways to achieve long distance intercellular communication. One pathway involves direct gap junction mediated signal transmission and the other consists of release of ATP through pannexin channels and excitation of purinergic receptors on nearby cells. Elevated extracellular potassium to levels occurring around hyperactive neurons affects both gap junction and pannexin1 channels. The action on Cx43 gap junctions is to increase intercellular coupling for a period that long outlasts the stimulus. This long term increase in coupling, termed “LINC”, is mediated through calcium and calmodulin dependent activation of calmodulin dependent kinase (CaMK). Pannexin1 can be activated by elevations in extracellular potassium through a mechanism that is quite different. In this case, potassium shifts activation potentials to more physiological range, thereby allowing channel opening at resting or slightly depolarized potentials. Enhanced activity of both these channel types by elevations in extracellular potassium of the magnitude occurring during periods of high neuronal activity likely has profound effects on intercellular signaling among astrocytes in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singer W, Lux HD (1975) Extracellular potassium gradients and visual receptive fields in the cat striate cortex. Brain Res 96(2):378–383

    Article  PubMed  CAS  Google Scholar 

  2. Katzman R (1976) Maintenance of a constant brain extracellular potassium. Fed Proc 35(6):1244–1247

    PubMed  CAS  Google Scholar 

  3. Connors B et al (1979) LSD’s effect on neuron populations in visual cortex gauged by transient responses of extracellular potassium evoked by optical stimuli. Neurosci Lett 13(2):147–150

    Article  PubMed  CAS  Google Scholar 

  4. Somjen GG (1979) Extracellular potassium in the mammalian central nervous system. Annu Rev Physiol 41:159–177

    Article  PubMed  CAS  Google Scholar 

  5. Heinemann U, Lux HD (1977) Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res 120(2):231–249

    Article  PubMed  CAS  Google Scholar 

  6. Gutnick MJ, Heinemann U, Lux HD (1979) Stimulus induced and seizure related changes in extracellular potassium concentration in cat thalamus (VPL). Electroencephalogr Clin Neurophysiol 47(3):329–344

    Article  PubMed  CAS  Google Scholar 

  7. Karwoski CJ et al (1985) Light-evoked increases in extracellular K+ in the plexiform layers of amphibian retinas. J Gen Physiol 86(2):189–213

    Article  PubMed  CAS  Google Scholar 

  8. Ransom BR, Carlini WG, Connors BW (1986) Brain extracellular space: developmental studies in rat optic nerve. Ann N Y Acad Sci 481:87–105

    Article  PubMed  CAS  Google Scholar 

  9. Frishman LJ et al (1992) Light-evoked changes in [K+]o in proximal portion of light-adapted cat retina. J Neurophysiol 67(5):1201–1212

    PubMed  CAS  Google Scholar 

  10. Heinemann U, Schaible HG, Schmidt RF (1990) Changes in extracellular potassium concentration in cat spinal cord in response to innocuous and noxious stimulation of legs with healthy and inflamed knee joints. Exp Brain Res 79(2):283–292

    Article  PubMed  CAS  Google Scholar 

  11. Vyskocil F, Kritz N, Bures J (1972) Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39(1):255–259

    Article  PubMed  CAS  Google Scholar 

  12. Somjen GG (2002) Ion regulation in the brain: implications for pathophysiology. Neuroscientist 8(3):254–267

    PubMed  CAS  Google Scholar 

  13. Astrup J, Norberg K (1976) Potassium activity in cerebral cortex in rats during progressive severe hypoglycemia. Brain Res 103(2):418–423

    Article  PubMed  CAS  Google Scholar 

  14. Blank WF Jr, Kirshner HS (1977) The kinetics of extracellular potassium changes during hypoxia and anoxia in the cat cerebral cortex. Brain Res 123(1):113–124

    Article  PubMed  CAS  Google Scholar 

  15. Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129(4):1045–1056

    Article  PubMed  CAS  Google Scholar 

  16. Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29(4):788–806

    PubMed  CAS  Google Scholar 

  17. Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81(3):1065–1096

    PubMed  CAS  Google Scholar 

  18. Pasantes-Morales H, Schousboe A (1989) Release of taurine from astrocytes during potassium-evoked swelling. Glia 2(1):45–50

    Article  PubMed  CAS  Google Scholar 

  19. Walz W (1997) Role of astrocytes in the spreading depression signal between ischemic core and penumbra. Neurosci Biobehav Rev 21(2):135–142

    Article  PubMed  CAS  Google Scholar 

  20. Huang R et al (1994) Signalling effect of elevated potassium concentrations and monoamines on brain energy metabolism at the cellular level. Dev Neurosci 16(5–6):337–351

    Article  PubMed  CAS  Google Scholar 

  21. Chesler M, Kraig RP (1987) Intracellular pH of astrocytes increases rapidly with cortical stimulation. Am J Physiol 253(4 Pt 2):R666–R670

    PubMed  CAS  Google Scholar 

  22. Chesler M, Kraig RP (1989) Intracellular pH transients of mammalian astrocytes. J Neurosci 9(6):2011–2019

    PubMed  CAS  Google Scholar 

  23. Deitmer JW, Szatkowski M (1990) Membrane potential dependence of intracellular pH regulation by identified glial cells in the leech central nervous system. J Physiol 421:617–631

    PubMed  CAS  Google Scholar 

  24. Pappas CA, Ransom BR (1994) Depolarization-induced alkalinization (DIA) in rat hippocampal astrocytes. J Neurophysiol 72(6):2816–2826

    PubMed  CAS  Google Scholar 

  25. Ruminot I et al (2011) NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K+. J Neurosci 31(40):14264–14271

    Article  PubMed  CAS  Google Scholar 

  26. Kaufman EE, Driscoll BF (1992) Carbon dioxide fixation in neuronal and astroglial cells in culture. J Neurochem 58(1):258–262

    Article  PubMed  CAS  Google Scholar 

  27. Subbarao KV, Stolzenburg JU, Hertz L (1995) Pharmacological characteristics of potassium-induced, glycogenolysis in astrocytes. Neurosci Lett 196(1–2):45–48

    Article  PubMed  CAS  Google Scholar 

  28. De Pina-Benabou MH et al (2001) Calmodulin kinase pathway mediates the K+-induced increase in Gap junctional communication between mouse spinal cord astrocytes. J Neurosci 21(17):6635–6643

    PubMed  Google Scholar 

  29. Baranova A et al (2004) The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 83(4):706–716

    Article  PubMed  CAS  Google Scholar 

  30. Panchin Y et al (2000) A ubiquitous family of putative gap junction molecules. Curr Biol 10(13):R473–R474

    Article  PubMed  CAS  Google Scholar 

  31. Sosinsky GE et al (2011) Pannexin channels are not gap junction hemichannels. Channels (Austin) 5(3):193–197

    Article  CAS  Google Scholar 

  32. Rochefort N et al (2005) Postnatal development of GFAP, connexin43 and connexin30 in cat visual cortex. Brain Res Dev Brain Res 160(2):252–264

    Article  PubMed  CAS  Google Scholar 

  33. Koulakoff A, Ezan P, Giaume C (2008) Neurons control the expression of connexin 30 and connexin 43 in mouse cortical astrocytes. Glia 56(12):1299–1311

    Article  PubMed  Google Scholar 

  34. Cotrina ML et al (2001) Expression and function of astrocytic gap junctions in aging. Brain Res 901(1–2):55–61

    Article  PubMed  CAS  Google Scholar 

  35. Rash JE et al (2001) Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord. Cell Commun Adhes 8(4–6):315–320

    Article  PubMed  CAS  Google Scholar 

  36. Wang J et al (2007) Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters. Am J Physiol Cell Physiol 293(3):C1112–C1119

    Article  PubMed  CAS  Google Scholar 

  37. Simpson I, Rose B, Loewenstein WR (1977) Size limit of molecules permeating the junctional membrane channels. Science 195(4275):294–296

    Article  PubMed  CAS  Google Scholar 

  38. Walz W, Hertz L (1982) Ouabain-sensitive and ouabain-resistant net uptake of potassium into astrocytes and neurons in primary cultures. J Neurochem 39(1):70–77

    Article  PubMed  CAS  Google Scholar 

  39. Walz W, Hertz L (1984) Intense furosemide-sensitive potassium accumulation in astrocytes in the presence of pathologically high extracellular potassium levels. J Cereb Blood Flow Metab 4(2):301–304

    Article  PubMed  CAS  Google Scholar 

  40. Kempski O et al (1991) Glial ion transport and volume control. Ann N Y Acad Sci 633:306–317

    Article  PubMed  CAS  Google Scholar 

  41. Higashi K et al (2001) An inwardly rectifying K+ channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol Cell Physiol 281(3):C922–C931

    PubMed  CAS  Google Scholar 

  42. Hibino H et al (2004) Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes. J Biol Chem 279(42):44065–44073

    Article  PubMed  CAS  Google Scholar 

  43. Kofuji P et al (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 20(15):5733–5740

    PubMed  CAS  Google Scholar 

  44. Xiong ZQ, Stringer JL (1999) Cesium induces spontaneous epileptiform activity without changing extracellular potassium regulation in rat hippocampus. J Neurophysiol 82(6):3339–3346

    PubMed  CAS  Google Scholar 

  45. D’Ambrosio R, Gordon DS, Winn HR (2002) Differential role of KIR channel and Na(+)/K(+)-pump in the regulation of extracellular K+ in rat hippocampus. J Neurophysiol 87(1):87–102

    PubMed  Google Scholar 

  46. Chever O et al (2010) Implication of Kir4.1 channel in excess potassium clearance: an in vivo study on anesthetized glial-conditional Kir4.1 knock-out mice. J Neurosci 30(47):15769–15777

    Article  PubMed  CAS  Google Scholar 

  47. Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29(4):768–787

    PubMed  CAS  Google Scholar 

  48. Somjen GG (1975) Electrophysiol Neuroglia. Annu Rev Physiol 37:163–190

    Article  PubMed  CAS  Google Scholar 

  49. Amzica F, Steriade M (2000) Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex. J Neurosci 20(17):6648–6665

    PubMed  CAS  Google Scholar 

  50. Amzica F, Massimini M, Manfridi A (2002) Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J Neurosci 22(3):1042–1053

    PubMed  CAS  Google Scholar 

  51. Gardner-Medwin AR (1983) Analysis of potassium dynamics in mammalian brain tissue. J Physiol 335:393–426

    PubMed  CAS  Google Scholar 

  52. Gardner-Medwin AR (1983) A study of the mechanisms by which potassium moves through brain tissue in the rat. J Physiol 335:353–374

    PubMed  CAS  Google Scholar 

  53. Dermietzel R et al (1991) Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J Neurosci 11(5):1421–1432

    PubMed  CAS  Google Scholar 

  54. Dermietzel R et al (2000) Connexin43 null mice reveal that astrocytes express multiple connexins. Brain Res Brain Res Rev 32(1):45–56

    Article  PubMed  CAS  Google Scholar 

  55. Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev 32(1):29–44

    Article  PubMed  CAS  Google Scholar 

  56. Scemes E, Suadicani SO, Spray DC (2000) Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J Neurosci 20(4):1435–1445

    PubMed  CAS  Google Scholar 

  57. Xu G et al (2010) Electrical coupling of astrocytes in rat hippocampal slices under physiological and simulated ischemic conditions. Glia 58(4):481–493

    PubMed  Google Scholar 

  58. Newman EA (1984) Regional specialization of retinal glial cell membrane. Nature 309(5964):155–157

    Article  PubMed  CAS  Google Scholar 

  59. Newman EA (1993) Inward-rectifying potassium channels in retinal glial (Muller) cells. J Neurosci 13(8):3333–3345

    PubMed  CAS  Google Scholar 

  60. Wallraff A et al (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26(20):5438–5447

    Article  PubMed  CAS  Google Scholar 

  61. Enkvist MO, McCarthy KD (1994) Astroglial gap junction communication is increased by treatment with either glutamate or high K+ concentration. J Neurochem 62(2):489–495

    Article  PubMed  CAS  Google Scholar 

  62. Roux L et al (2011) Plasticity of astroglial networks in olfactory glomeruli. Proc Natl Acad Sci USA 108(45):18442–18446

    Article  PubMed  CAS  Google Scholar 

  63. Nagy JI, Li WE (2000) A brain slice model for in vitro analyses of astrocytic gap junction and connexin43 regulation: actions of ischemia, glutamate and elevated potassium. Eur J Neurosci 12(12):4567–4572

    PubMed  CAS  Google Scholar 

  64. Li WE, Nagy JI (2000) Activation of fibres in rat sciatic nerve alters phosphorylation state of connexin-43 at astrocytic gap junctions in spinal cord: evidence for junction regulation by neuronal-glial interactions. Neuroscience 97(1):113–123

    Article  PubMed  CAS  Google Scholar 

  65. Revilla A, Bennett MV, Barrio LC (2000) Molecular determinants of membrane potential dependence in vertebrate gap junction channels. Proc Natl Acad Sci USA 97(26):14760–14765

    Article  PubMed  CAS  Google Scholar 

  66. Spray DC, Harris AL, Bennett MV (1981) Equilibrium properties of a voltage-dependent junctional conductance. J Gen Physiol 77(1):77–93

    Article  PubMed  CAS  Google Scholar 

  67. Francis D et al (1999) Connexin diversity and gap junction regulation by pHi. Dev Genet 24(1–2):123–136

    Article  PubMed  CAS  Google Scholar 

  68. MacVicar BA (1984) Voltage-dependent calcium channels in glial cells. Science 226(4680):1345–1347

    Article  PubMed  CAS  Google Scholar 

  69. MacVicar BA et al (1991) Modulation of intracellular Ca++ in cultured astrocytes by influx through voltage-activated Ca++ channels. Glia 4(5):448–455

    Article  PubMed  CAS  Google Scholar 

  70. Duffy S, MacVicar BA (1994) Potassium-dependent calcium influx in acutely isolated hippocampal astrocytes. Neuroscience 61(1):51–61

    Article  PubMed  CAS  Google Scholar 

  71. Westenbroek RE et al (1998) Upregulation of L-type Ca2+ channels in reactive astrocytes after brain injury, hypomyelination, and ischemia. J Neurosci 18(7):2321–2334

    PubMed  CAS  Google Scholar 

  72. Scemes E et al (2007) Connexin and pannexin mediated cell–cell communication. Neuron Glia Biol 3(3):199–208

    Article  PubMed  Google Scholar 

  73. Scemes E, Spray DC, Meda P (2009) Connexins, pannexins, innexins: novel roles of “hemi-channels”. Pflugers Arch 457(6):1207–1226

    Article  PubMed  CAS  Google Scholar 

  74. Silverman WR et al (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284(27):18143–18151

    Article  PubMed  CAS  Google Scholar 

  75. Santiago MF et al (2011) Targeting pannexin1 improves seizure outcome. PLoS ONE 6(9):e25178

    Article  PubMed  CAS  Google Scholar 

  76. Scemes E (2000) Components of astrocytic intercellular calcium signaling. Mol Neurobiol 22(1–3):167–179

    Article  PubMed  CAS  Google Scholar 

  77. Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54(7):716–725

    Article  PubMed  Google Scholar 

  78. Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26(5):1378–1385

    Article  PubMed  CAS  Google Scholar 

  79. Suadicani SO et al (2003) Acute downregulation of Cx43 alters P2Y receptor expression levels in mouse spinal cord astrocytes. Glia 42(2):160–171

    Article  PubMed  Google Scholar 

  80. Pereda AE et al (2004) Dynamics of electrical transmission at club endings on the Mauthner cells. Brain Res Brain Res Rev 47(1–3):227–244

    Article  PubMed  CAS  Google Scholar 

  81. Alev C et al (2008) The neuronal connexin36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors. Proc Natl Acad Sci USA 105(52):20964–20969

    Article  PubMed  CAS  Google Scholar 

  82. Chen KC, Nicholson C (2000) Spatial buffering of potassium ions in brain extracellular space. Biophys J 78(6):2776–2797

    Article  PubMed  CAS  Google Scholar 

  83. Walz W (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 36(4–5):291–300

    Article  PubMed  CAS  Google Scholar 

  84. Scemes E (2008) Modulation of astrocyte P2Y1 receptors by the carboxyl terminal domain of the gap junction protein Cx43. Glia 56(2):145–153

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work of Drs Scemes and Spray is supported by NIH (RO1-NS052245 (ES) and RO1-NS04128 (DCS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana Scemes.

Additional information

Special Issue: In honor of Leif Hertz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scemes, E., Spray, D.C. Extracellular K+ and Astrocyte Signaling via Connexin and Pannexin Channels. Neurochem Res 37, 2310–2316 (2012). https://doi.org/10.1007/s11064-012-0759-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0759-4

Keywords

Navigation