Skip to main content
Log in

Autophagy Activation Contributes to the Neuroprotection of Remote Ischemic Perconditioning Against Focal Cerebral Ischemia in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Remote ischemic perconditioning (RIPer) has been proved to provide potent cardioprotection. However, there are few studies on neuroprotection of RIPer. This study aims to clarify the neuroprotective effect of RIPer and the role of autophagy induced by RIPer against cerebral ischemia reperfusion injury in rats. Using a transient middle cerebral artery occlusion (MCAO) model in rats to imitate focal cerebral ischemia. RIPer was carried out 4 cycles of 10 min ischemia and 10 min reperfusion, with a thin elastic band tourniquet encircled on the bilateral femoral arteries at the start of 10 min after MCAO. Autophagy inhibitor 3-methyladenine (3-MA) and autophagy inducer rapamycin were administered respectively to determine the contribution of autophagy in RIPer. Neurologic deficit scores, infarct volume, brain edema, Nissl staining, TUNEL assay, immunohistochemistry and western blot was performed to analyze the neuroprotection of RIPer and the contribution of autophagy in RIPer. RIPer significantly exerted neuroprotective effects against cerebral ischemia reperfusion injury in rats, and the autophagy-lysosome pathway was activated by RIPer treatment. 3-MA reversed the neuroprotective effects induced by RIPer, whereas rapamycin ameliorated the brain ischemic injury. Autophagy activation contributes to the neuroprotection by RIPer against focal cerebral ischemia in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K (1990) ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res 528:21–24

    Article  PubMed  CAS  Google Scholar 

  2. Zhao H, Sapolsky RM, Steinberg GK (2006) Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab 26:1114–1121

    Article  PubMed  CAS  Google Scholar 

  3. Wang J-Y, Shen J, Gao Q, Ye Z-G, Yang S-Y, Liang H-W, Bruce IC, Luo B-Y, Xia Q (2008) Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats. Stroke 39:983–990

    Article  PubMed  Google Scholar 

  4. Moskowitz MA, Waeber C (2011) Remote ischemic preconditioning making the brain more tolerant, safely and inexpensively. Circulation 123:709–711

    Article  PubMed  Google Scholar 

  5. Hess DC, Hoda MN, Bhatia K (2013) Remote limb preconditioning and postconditioning will it translate into a promising treatment for acute stroke? Stroke 44:1191–1197

    Article  PubMed  Google Scholar 

  6. Ren C, Yan Z, Wei D, Gao X, Chen X, Zhao H (2009) Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res 1288:88–94

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Hahn CD, Manlhiot C, Schmidt MR, Nielsen TT, Redington AN (2011) Remote ischemic per-conditioning a novel therapy for acute stroke? Stroke 42:2960–2962

    Article  PubMed  Google Scholar 

  8. Purcell H, Pepper J (2007) An arm and a leg to protect the heart? Lancet 370:542–543

    Article  PubMed  Google Scholar 

  9. Ren C, Gao M, Dornbos D, Ding Y, Zeng X, Luo Y, Ji X (2011) Remote ischemic post-conditioning reduced brain damage in experimental ischemia/reperfusion injury. Neurol Res 33:514–519

    Article  PubMed  Google Scholar 

  10. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734

    Article  PubMed  CAS  Google Scholar 

  11. Tesco G (2012) Autophagy: a common road to perdition in acute brain injuries and Alzheimer’s disease. J Neurochem 120:475–476

    Article  PubMed  CAS  Google Scholar 

  12. Orvedahl A, Levine B (2008) Eating the enemy within: autophagy in infectious diseases. Cell Death Differ 16:57–69

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther 18:250–260

    Article  PubMed  CAS  Google Scholar 

  14. Xu M, Zhang H-l (2011) Death and survival of neuronal and astrocytic cells in ischemic brain injury: a role of autophagy. Acta Pharmacol Sin 32:1089–1099

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Sheng R, Zhang L-S, Han R, Liu X-Q, Gao B, Qin Z-H (2010) Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy 6:482–494

    Article  PubMed  CAS  Google Scholar 

  16. Yan W, Zhang H, Bai X, Lu Y, Dong H, Xiong L (2011) Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res 1402:109–121

    Article  PubMed  CAS  Google Scholar 

  17. Qi ZF, Luo YM, Liu XR, Wang RL, Zhao HP, Yan F, Song ZJ, Luo M, Ji XM (2012) AKT/GSK3β-dependent autophagy contributes to the neuroprotection of limb remote ischemic postconditioning in the transient cerebral ischemic rat model. CNS Neurosci Ther 18:965–973

    Article  CAS  Google Scholar 

  18. Gao L, Jiang T, Guo J, Liu Y, Cui G, Gu L, Su L, Zhang Y (2012) Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One 7:e46092

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell Biol 36:2491–2502

    Article  PubMed  CAS  Google Scholar 

  20. Wen Y-D, Sheng R, Zhang L-S, Han R, Zhang X, Zhang X-D, Han F, Fukunaga K, Qin Z-H (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4:762–769

    Article  PubMed  CAS  Google Scholar 

  21. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  PubMed  CAS  Google Scholar 

  22. Garcia JH, Wagner S, Liu K-F, Hu X-J (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats Statistical validation. Stroke 26:627–635

    Article  PubMed  CAS  Google Scholar 

  23. Rosenberg GA, Scremin O, Estrada E, Kyner WT (1992) Arginine vasopressin V1-antagonist and atrial natriuretic peptide reduce hemorrhagic brain edema in rats. Stroke 23:1767–1773

    Article  PubMed  CAS  Google Scholar 

  24. Hoda MN, Siddiqui S, Herberg S, Periyasamy-Thandavan S, Bhatia K, Hafez SS, Johnson MH, Hill WD, Ergul A, Fagan SC (2012) Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke 43:2794–2799

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, Kominami E, Uchiyama Y (1995) Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 15:1001–1011

    PubMed  CAS  Google Scholar 

  26. Wang J-Y, Xia Q, Chu K-T, Pan J, Sun L-N, Zeng B, Zhu Y-J, Wang Q, Wang K, Luo B-Y (2011) Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rat is prevented by 3-methyladenine: a widely used inhibitor of autophagy. J Neuropathol Exp Neurol 70:314–322

    Article  PubMed  CAS  Google Scholar 

  27. Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 6:366–377

    Article  PubMed  CAS  Google Scholar 

  28. Murgia MG, Jordan S, Kahan BD (1996) The side effect profile of sirolimus: a phase I study in quiescent cyclosporine-prednisone-treated renal transplant patients. Kidney Int 49:209–216

    Article  PubMed  CAS  Google Scholar 

  29. Li L, Luo W, Huang L, Zhang W, Gao Y, Jiang H, Zhang C, Long L, Chen S (2010) Remote perconditioning reduces myocardial injury in adult valve replacement: a randomized controlled trial. J Surg Res 164:e21–e26

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Zhang, T., Wang, K. et al. Autophagy Activation Contributes to the Neuroprotection of Remote Ischemic Perconditioning Against Focal Cerebral Ischemia in Rats. Neurochem Res 39, 2068–2077 (2014). https://doi.org/10.1007/s11064-014-1396-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1396-x

Keywords

Navigation