Skip to main content
Log in

Optimizing the spatial resolution of Channelrhodopsin-2 activation

Brain Cell Biology

Abstract

Over the past few years, the light-gated cation channel Channelrhodopsin-2 (ChR2) has seen a remarkable diversity of applications in neuroscience. However, commonly used wide-field illumination provides poor spatial selectivity for cell stimulation. We explored the potential of focal laser illumination to map photocurrents of individual neurons in sparsely transfected hippocampal slice cultures. Interestingly, the best spatial resolution of photocurrent induction was obtained at the lowest laser power. By adjusting the light intensity to a neuron’s spike threshold, we were able to trigger action potentials with a spatial selectivity of less than 30 μm. Experiments with dissociated hippocampal cells suggested that the main factor limiting the spatial resolution was ChR2 current density rather than scattering of the excitation light. We conclude that subcellular resolution can be achieved only in cells with a high ChR2 expression level and that future improved variants of ChR2 are likely to extend the spatial resolution of photocurrent induction to the level of single dendrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamantidis A. R., Zhang F., Aravanis A. M., Deisseroth K., de Lecea L. (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424

    Article  PubMed  CAS  Google Scholar 

  • Aravanis A. M., Wang L. P., Zhang F., Meltzer L. A., Mogri M. Z., Schneider M. B., Deisseroth K. (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural. Eng. 4:S143–S156

    Article  PubMed  Google Scholar 

  • Arenkiel B. R., Peca J., Davison I. G., Feliciano C., Deisseroth K., Augustine G. J., Ehlers M. D., Feng G. (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54:205–218

    Article  PubMed  CAS  Google Scholar 

  • Bamann C., Kirsch T., Nagel G., Bamberg E. (2008) Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J. Mol. Biol. 375:686–694

    Article  PubMed  CAS  Google Scholar 

  • Boyden E. S., Zhang F., Bamberg E., Nagel G., Deisseroth K. (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8:1263–1268

    Article  PubMed  CAS  Google Scholar 

  • Fischer M., Kaech S., Knutti D., Matus A. (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20:847–854

    Article  PubMed  CAS  Google Scholar 

  • Huber D., Petreanu L., Ghitani N., Ranade S., Hromadka T., Mainen Z., Svoboda K. (2008) Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451:61–64

    Article  PubMed  CAS  Google Scholar 

  • Kasuga A., Enoki R., Hashimoto Y., Akiyama H., Kawamura Y., Inoue M., Kudo Y., Miyakawa H. (2003) Optical detection of dendritic spike initiation in hippocampal CA1 pyramidal neurons. Neuroscience 118:899–907

    Article  PubMed  CAS  Google Scholar 

  • Kubitscheck U., Kuckmann O., Kues T., Peters R. (2000) Imaging and tracking of single GFP molecules in solution. Biophys. J. 78:2170–2179

    Article  PubMed  CAS  Google Scholar 

  • Mao T., O’Connor D. H., Scheuss V., Nakai J., Svoboda K. (2008) Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS ONE 3:e1796

    Article  PubMed  CAS  Google Scholar 

  • Nagel G., Szellas T., Huhn W., Kateriya S., Adeishvili N., Berthold P., Ollig D., Hegemann P., Bamberg E. (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100:13940–13945

    Article  PubMed  CAS  Google Scholar 

  • Petreanu L., Huber D., Sobczyk A., Svoboda K. (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668

    Article  PubMed  CAS  Google Scholar 

  • Skeberdis V. A., Chevaleyre V., Lau C. G., Goldberg J. H., Pettit D. L., Suadicani S. O., Lin Y., Bennett M. V., Yuste R., Castillo P. E., Zukin R. S. (2006) Protein kinase A regulates calcium permeability of NMDA receptors. Nat. Neurosci. 9:501–510

    Article  PubMed  CAS  Google Scholar 

  • Stoppini L., Buchs P. A., Muller D. (1991) A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37:173–182

    Article  PubMed  CAS  Google Scholar 

  • Stosiek C., Garaschuk O., Holthoff K., Konnerth A. (2003) In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100:7319–7324

    Article  PubMed  CAS  Google Scholar 

  • Wang H., Peca J., Matsuzaki M., Matsuzaki K., Noguchi J., Qiu L., Wang D., Zhang F., Boyden E., Deisseroth K., Kasai H., Hall W. C., Feng G., Augustine G. J. (2007) High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. USA 104:8143–8148

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y. P., Oertner T. G. (2007) Optical induction of synaptic plasticity using a light-sensitive channel. Nat. Methods 4:139–141

    Article  PubMed  CAS  Google Scholar 

  • Zhang F., Prigge M., Beyriere F., Tsunoda S. P., Mattis J., Yizhar O., Hegemann P., Deisseroth K. (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631–633

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Daniela Gerosa-Erni for excellent technical assistance, Nunu Mchedlishvili for software development, and Georg Nagel, Karl Deisseroth and Roger Y. Tsien for essential constructs. The work was supported by the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Oertner.

Electronic supplementary material

Below is the link to the electronic supplementary material

11068_2008_9025_Fig5_ESM.gif

MOESM1 [Supplementary Fig. 1. Spatial selectivity of spike initiation breaks down at laser powers > 300 µW. A ChR2-transfected CA1 pyramidal cell was stimulated in a line pattern perpendicular to the orientation of the apical dendrite with 10 ms laser pulses at 3 different laser intensities. The soma was positioned in the middle] (GIF 325 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoenenberger, P., Grunditz, Å., Rose, T. et al. Optimizing the spatial resolution of Channelrhodopsin-2 activation. Brain Cell Bio 36, 119–127 (2008). https://doi.org/10.1007/s11068-008-9025-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11068-008-9025-8

Keywords

Navigation