Skip to main content

Advertisement

Log in

Imaging the Dopamine System with In Vivo [11C]raclopride Displacement Studies: Understanding the True Mechanism

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Measuring changes in dopamine (DA) levels in humans using radioligand-displacement studies and positron emission tomography (PET) has provided important empirical findings in diseases and normal neurophysiology. These studies are based on the assumption that DA exerts a competitive inhibition on D2-radioligand binding. However, the transfer of this hypothesis to a proven mechanism has not been fully achieved yet and an accumulating number of studies challenge it. In addition, new evidence suggests that DA exerts a noncompetitive inhibition on D2-radioligand binding under amphetamine conditions. This article reviews the theoretical basis for the DA competition hypothesis, the in vivo and in vitro evidences supporting a noncompetitive action of DA on D2-radioligand binding under amphetamine conditions, and discusses possible mechanisms underlying this noncompetitive interaction. Finally, we propose that such noncompetitive interactions may have important implications for how one interprets findings obtained from radioligand-displacement PET studies in neuropsychiatric diseases, especially in schizophrenia in which a dysregulation of the DA-promoted internalization of D2 receptors was recently suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A Breier TP Su R Saunders et al. (1997) ArticleTitleSchizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method Proc Natl Acad Sci U S A 94 2569–2574 Occurrence Handle10.1073/pnas.94.6.2569

    Article  Google Scholar 

  2. M Laruelle A Abi-Dargham CH Dyck Particlevan et al. (1996) ArticleTitleSingle photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects Proc Natl Acad Sci U S A 93 9235–9240 Occurrence Handle10.1073/pnas.93.17.9235

    Article  Google Scholar 

  3. ND Volkow GJ Wang JS Fowler et al. (1997) ArticleTitleDecreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects Nature 386 830–833 Occurrence Handle10.1038/386830a0

    Article  Google Scholar 

  4. R Fuente-Fernandez Particlede la TJ Ruth V Sossi et al. (2001) ArticleTitleExpectation and dopamine release: Mechanism of the placebo effect in Parkinson’s disease Science 293 1164–1166 Occurrence Handle10.1126/science.1060937

    Article  Google Scholar 

  5. MJ Koepp RN Gunn AD Lawrence et al. (1998) ArticleTitleEvidence for striatal dopamine release during a video game Nature 393 266–268 Occurrence Handle10.1038/30498 Occurrence Handle1:CAS:528:DyaK1cXjtlyltLc%3D Occurrence Handle9607763

    Article  CAS  PubMed  Google Scholar 

  6. B Schommartz R Larisch H Vosberg HM Muller-Gartner (2000) ArticleTitleStriatal dopamine release in reading and writing measured with [123I]iodobenzamide and single photon emission computed tomography in right handed human subjects Neurosci Lett 292 37–40 Occurrence Handle10.1016/S0304-3940(00)01431-2

    Article  Google Scholar 

  7. P Seeman HC Guan HB Niznik (1989) ArticleTitleEndogenous dopamine lowers the dopamine D2 receptor density as measured by [3H]raclopride: Implications for positron emission tomography of the human brain Synapse 3 96–97 Occurrence Handle10.1002/syn.890030113

    Article  Google Scholar 

  8. SB Ross DM Jackson (1989) ArticleTitleKinetic properties of the accumulation of 3H-raclopride in the mouse brain in vivo Naunyn-Schmiedeberg’s Arch Pharmacol 340 6–12

    Google Scholar 

  9. ND Volkow GJ Wang JS Fowler et al. (1994) ArticleTitleImaging endogenous dopamine competition with [11C]raclopride in the human brain Synapse 16 255–262 Occurrence Handle10.1002/syn.890160402

    Article  Google Scholar 

  10. L Farde AL Nordstrom FA Wiesel et al. (1992) ArticleTitlePositron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects Arch Gen Psychiatry 49 538–544 Occurrence Handle1:STN:280:By2A38fmtlw%3D Occurrence Handle1352677

    CAS  PubMed  Google Scholar 

  11. RB Innis RT Malison M al-Tikriti et al. (1992) ArticleTitleAmphetamine-stimulated dopamine release competes in vivo for [123I]IBZM binding to the D2 receptor in nonhuman primates Synapse 10 177–184 Occurrence Handle1:CAS:528:DyaK38XkvVGqt7c%3D Occurrence Handle1532675

    CAS  PubMed  Google Scholar 

  12. ND Volkow GJ Wang JS Fowler et al. (1994) ArticleTitleImaging endogenous dopamine competition with [11C]raclopride in the human brain Synapse 16 255–262 Occurrence Handle10.1002/syn.890160402

    Article  Google Scholar 

  13. M Laruelle A Abi-Dargham CH Dyck Particlevan et al. (1995) ArticleTitleSPECT imaging of striatal dopamine release after amphetamine challenge J Nucl Med 36 1182–1190

    Google Scholar 

  14. GS Smith SL Dewey JD Brodie et al. (1997) ArticleTitleSerotonergic modulation of dopamine measured with [11C]raclopride and PET in normal human subjects Am J Psychiatry 154 490–496

    Google Scholar 

  15. H Tsukada S Nishiyama T Kakiuchi et al. (1999) ArticleTitleIsoflurane anesthesia enhances the inhibitory effects of cocaine and GBR12909 on dopamine transporter: PET studies in combination with microdialysis in the monkey brain Brain Res 849 85–96 Occurrence Handle10.1016/S0006-8993(99)02018-1

    Article  Google Scholar 

  16. M Laruelle CD D’Souza RM Baldwin et al. (1997) ArticleTitleImaging D2 receptor occupancy by endogenous dopamine in humans Neuropsychopharmacology 17 162–174 Occurrence Handle10.1016/S0893-133X(97)00043-2

    Article  Google Scholar 

  17. N Ginovart L Farde C Halldin CG Swahn (1997) ArticleTitleEffect of reserpine-induced depletion of synaptic dopamine on [11C]raclopride binding to D2-dopamine receptors in the monkey brain Synapse 25 321–325

    Google Scholar 

  18. JF Fischer AK Cho (1979) ArticleTitleChemical release of dopamine from striatal homogenates: Evidence for an exchange diffusion model J Pharmacol Exp Ther 208 203–209 Occurrence Handle1:CAS:528:DyaE1MXhsV2isbo%3D Occurrence Handle762652

    CAS  PubMed  Google Scholar 

  19. D Sulzer TK Chen YY Lau et al. (1995) ArticleTitleAmphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport J Neurosci 15 4102–4108 Occurrence Handle1:CAS:528:DyaK2MXls1aitrg%3D Occurrence Handle7751968

    CAS  PubMed  Google Scholar 

  20. VL Villemagne RB Rothman F Yokoi et al. (1999) ArticleTitleDoses of GBR12909 that suppress cocaine self-administration in non-human primates substantially occupy dopamine transporters as measured by [11C] WIN35,428 PET scans Synapse 32 44–50 Occurrence Handle10.1002/(SICI)1098-2396(199904)32:1<44::AID-SYN6>3.0.CO;2-9

    Article  Google Scholar 

  21. M Laruelle RN Iyer MS al-Tikriti et al. (1997) ArticleTitleMicrodialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates Synapse 25 1–14 Occurrence Handle10.1002/(SICI)1098-2396(199701)25:1<1::AID-SYN1>3.0.CO;2-H

    Article  Google Scholar 

  22. H Tsukada S Nishiyama T Kakiuchi et al. (1999) ArticleTitleIs synaptic dopamine concentration the exclusive factor which alters the in vivo binding of [11C]raclopride?: PET studies combined with microdialysis in conscious monkeys Brain Res 841 160–169 Occurrence Handle10.1016/S0006-8993(99)01834-X

    Article  Google Scholar 

  23. N Ginovart W Hassoun M Cavorsin ParticleLe et al. (2002) ArticleTitleEffects of amphetamine and evoked dopamine release on [11C]raclopride binding in anesthetized cats Neuropsychopharmacology 27 72–84 Occurrence Handle10.1016/S0893-133X(02)00285-3

    Article  Google Scholar 

  24. J Mukherjee ZY Yang R Lew et al. (1997) ArticleTitleEvaluation of d-amphetamine effects on the binding of dopamine D2-receptor radioligand, 18F-fallypride in nonhuman primates using positron emission tomography Synapse 27 1–13

    Google Scholar 

  25. YH Chou C Halldin L Farde (2000) ArticleTitleEffect of amphetamine on extrastriatal D2 dopamine receptor binding in the primate brain: A PET study Synapse 38 138–143 Occurrence Handle10.1002/1098-2396(200011)38:2<138::AID-SYN4>3.0.CO;2-7

    Article  Google Scholar 

  26. RH Mach MA Nader RL Ehrenkaufer et al. (1997) ArticleTitleUse of positron emission tomography to study the dynamics of psychostimulant-induced dopamine release Pharmacol Biochem Behav 57 477–486 Occurrence Handle10.1016/S0091-3057(96)00449-2

    Article  Google Scholar 

  27. H Onoe O Inoue K Suzuki et al. (1994) ArticleTitleKetamine increases the striatal N-[11C]methylspiperone binding in vivo: Positron emission tomography study using conscious rhesus monkey Brain Res 663 191–198 Occurrence Handle10.1016/0006-8993(94)91263-7

    Article  Google Scholar 

  28. K Kobayashi O Inoue Y Watanabe et al. (1995) ArticleTitleDifference in response of D2 receptor binding between 11C–N-methylspiperone and 11C-raclopride against anesthetics in rhesus monkey brain J Neural Transm Gen Sect 100 147–151

    Google Scholar 

  29. P Hartvig R Torstenson J Tedroff et al. (1997) ArticleTitleAmphetamine effects on dopamine release and synthesis rate studied in the Rhesus monkey brain by positron emission tomography J Neural Transm 104 329–339

    Google Scholar 

  30. A Abi-Dargham N Simpson L Kegeles et al. (1999) ArticleTitlePET studies of binding competition between endogenous dopamine and the D1 radiotracer [11C]NNC 756 Synapse 32 93–109 Occurrence Handle10.1002/(SICI)1098-2396(199905)32:2<93::AID-SYN3>3.0.CO;2-C

    Article  Google Scholar 

  31. YH Chou P Karlsson C Halldin et al. (1999) ArticleTitleA PET study of D1-like dopamine receptor ligand binding during altered endogenous dopamine levels in the primate brain Psychopharmacology 146 220–227 Occurrence Handle10.1007/s002130051110

    Article  Google Scholar 

  32. AN Gifford MH Park TL Kash et al. (2000) ArticleTitleEffect of amphetamine-induced dopamine release on radiotracer binding to D1 and D2 receptors in rat brain striatal slices Naunyn-Schmiedeberg’s Arch Pharmacol 362 413–418 Occurrence Handle10.1007/s002100000293

    Article  Google Scholar 

  33. T Sharp T Zetterstrom T Ljungberg U Ungerstedt (1987) ArticleTitleA direct comparison of amphetamine-induced behaviours and regional brain dopamine release in the rat using intracerebral dialysis Brain Res 401 322–330 Occurrence Handle10.1016/0006-8993(87)91416-8 Occurrence Handle1:CAS:528:DyaL2sXps1WisA%3D%3D Occurrence Handle3815099

    Article  CAS  PubMed  Google Scholar 

  34. SP Butcher IS Fairbrother JS Kelly GW Arbuthnott (1988) ArticleTitleAmphetamine-induced dopamine release in the rat striatum: An in vivo microdialysis study J Neurochem 50 346–355

    Google Scholar 

  35. RE Carson MA Channing B Vuong et al. (2001) Amphetamine-induced dopamine release: Duration of action assessed with [11C]raclopride in anesthetized monkeys A Gjedde (Eds) Physiological imaging of the brain with PET Springer-Verlag New York 205–209

    Google Scholar 

  36. L Cardenas S Houle S Kapur UE Busto (2004) ArticleTitleOral d-amphetamine causes prolonged displacement of [11C]raclopride as measured by PET Synapse 51 27–31 Occurrence Handle10.1002/syn.10282

    Article  Google Scholar 

  37. W Sun N Ginovart F Ko et al. (2003) ArticleTitleIn vivo evidence for dopamine-mediated internalization of D2-receptors after amphetamine: Differential findings with [3H]raclopride versus [3H]spiperone Mol Pharmacol 63 456–462 Occurrence Handle10.1124/mol.63.2.456

    Article  Google Scholar 

  38. N Ginovart AA Wilson S Houle S Kapur (2003) ArticleTitleAmphetamine pretreatment induces a change in both D2-receptor density and apparent affinity: A [11C]raclopride positron emission tomography study in cats Biol Psychiatry 55 1188–1194 Occurrence Handle10.1016/j.biopsych.2004.02.019

    Article  Google Scholar 

  39. D Doudet JE Holden (2003) ArticleTitleRaclopride studies of dopamine release: Dependence on presynaptic integrity Biol Psychiatry 54 1193–1199 Occurrence Handle10.1016/S0006-3223(03)00288-9

    Article  Google Scholar 

  40. L Farde FA Wiesel S Stone-Elander et al. (1990) ArticleTitleD2 dopamine receptors in neuroleptic–naive schizophrenic patients. A positron emission tomography study with [11C]raclopride Arch Gen Psychiatry 47 213–219

    Google Scholar 

  41. P Seeman HC Guan O Civelli et al. (1992) ArticleTitleThe cloned dopamine D2 receptor reveals different densities for dopamine receptor antagonist ligands. Implications for human brain positron emission tomography Eur J Pharmacol 227 139–146 Occurrence Handle10.1016/0922-4106(92)90121-B

    Article  Google Scholar 

  42. M Terai K Hidaka Y Nakamura (1989) ArticleTitleComparison of [3H]YM-09151-2 with [3H]spiperone and [3H]raclopride for dopamine D2 receptor binding to rat striatum Eur J Pharmacol 173 177–182 Occurrence Handle10.1016/0014-2999(89)90516-5

    Article  Google Scholar 

  43. L Farde H Hall S Pauli C Halldin (1995) ArticleTitleVariability in D2-dopamine receptor density and affinity: A PET study with [11C]raclopride in man Synapse 20 200–208 Occurrence Handle10.1002/syn.890200303

    Article  Google Scholar 

  44. DF Wong HN Wagner SuffixJr LE Tune et al. (1986) ArticleTitlePositron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics Science 234 1558–1563

    Google Scholar 

  45. AL Nordstrom L Farde L Eriksson C Halldin (1995) ArticleTitleNo elevated D2 dopamine receptors in neuroleptic–naive schizophrenic patients revealed by positron emission tomography and [11C]N-methylspiperone Psychiatry Res 61 67–83

    Google Scholar 

  46. P Zawarynski T Tallerico P Seeman et al. (1998) ArticleTitleDopamine D2 receptor dimers in human and rat brain FEBS Lett 441 383–386 Occurrence Handle10.1016/S0014-5793(98)01588-9

    Article  Google Scholar 

  47. JM Vile UM D’Souza PG Strange (1995) ArticleTitle[3H]Nemonapride and [3H]spiperone label equivalent numbers of D2 and D3 dopamine receptors in a range of tissues and under different conditions J Neurochem 64 940–943

    Google Scholar 

  48. A Malmberg E Jerning N Mohell (1996) ArticleTitleCritical reevaluation of spiperone and benzamide binding to dopamine D2 receptors: Evidence for identical binding sites Eur J Pharmacol 303 123–128 Occurrence Handle10.1016/0014-2999(96)00080-5

    Article  Google Scholar 

  49. H Hall I Wedel C Halldin et al. (1990) ArticleTitleComparison of the in vitro receptor binding properties of N-[3H]methylspiperone and [3H]raclopride to rat and human brain membranes J Neurochem 55 2048–2057

    Google Scholar 

  50. A Breier CM Adler N Weisenfeld et al. (1998) ArticleTitleEffects of NMDA antagonism on striatal dopamine release in healthy subjects: Application of a novel PET approach Synapse 29 142–147 Occurrence Handle10.1002/(SICI)1098-2396(199806)29:2<142::AID-SYN5>3.0.CO;2-7

    Article  Google Scholar 

  51. GS Smith R Schloesser JD Brodie et al. (1998) ArticleTitleGlutamate modulation of dopamine measured in vivo with positron emission tomography (PET) and 11C-raclopride in normal human subjects Neuropsychopharmacology 18 18–25 Occurrence Handle10.1016/S0893-133X(97)00092-4

    Article  Google Scholar 

  52. H Tsukada N Harada S Nishiyama et al. (2000) ArticleTitleKetamine decreased striatal [11C]raclopride binding with no alterations in static dopamine concentrations in the striatal extracellular fluid in the monkey brain: Multiparametric PET studies combined with microdialysis analysis Synapse 37 95–103

    Google Scholar 

  53. H Tsukada N Harada S Nishiyama et al. (2000) ArticleTitleCholinergic neuronal modulation alters dopamine D2 receptor availability in vivo by regulating receptor affinity induced by facilitated synaptic dopamine turnover: Positron emission tomography studies with microdialysis in the conscious monkey brain J Neurosci 20 7067–7073

    Google Scholar 

  54. DR Sibley A Lean ParticleDe I Creese (1982) ArticleTitleAnterior pituitary dopamine receptors. Demonstration of interconvertible high and low affinity states of the D2-dopamine receptor J Biol Chem 257 6351–6361

    Google Scholar 

  55. P Seeman HB Niznik HC Guan et al. (1989) ArticleTitleLink between D1 and D2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain Proc Natl Acad Sci U S A 86 10156–10160

    Google Scholar 

  56. D Grigoriadis P Seeman (1985) ArticleTitleComplete conversion of brain D2 dopamine receptors from the high- to the low-affinity state for dopamine agonists, using sodium ions and guanine nucleotide J Neurochem 44 1925–1935

    Google Scholar 

  57. A Christopoulos T Kenakin (2002) ArticleTitleG protein-coupled receptor allosterism and complexing Pharmacol Rev 54 323–374

    Google Scholar 

  58. S Rees D Morrow T Kenakin (2002) ArticleTitleGPCR drug discovery through the exploitation of allosteric drug binding sites Recept Channels 8 261–268 Occurrence Handle10.1080/10606820214640

    Article  Google Scholar 

  59. DC Chugani RF Ackermann ME Phelps (1988) ArticleTitleIn vivo [3H]spiperone binding: Evidence for accumulation in corpus striatum by agonist-mediated receptor internalization J Cereb Blood Flow Metab 8 291–303

    Google Scholar 

  60. M Laruelle (2000) ArticleTitleImaging synaptic neurotransmission with in vivo binding competition techniques: A critical review J Cereb Blood Flow Metab 20 423–451

    Google Scholar 

  61. DM Chuang WJ Kinnier L Farber E Costa (1980) ArticleTitleA biochemical study of receptor internalization during beta-adrenergic receptor desensitization in frog erythrocytes Mol Pharmacol 18 348–355

    Google Scholar 

  62. DM Chuang (1982) ArticleTitleInternalization of beta-adrenergic receptor binding sites: Involvements of lysosomal enzymes Biochem Biophys Res Commun 105 1466–1472 Occurrence Handle10.1016/0006-291X(82)90953-6

    Article  Google Scholar 

  63. SA Berry MC Shah N Khan BL Roth (1996) ArticleTitleRapid agonist-induced internalization of the 5-hydroxytryptamine2A receptor occurs via the endosome pathway in vitro Mol Pharmacol 50 306–313

    Google Scholar 

  64. A Bhatnagar DL Willins JA Gray et al. (2001) ArticleTitleThe dynamin-dependent, arrestin-independent internalization of 5-hydroxytryptamine2A (5-HT2A) serotonin receptors reveals differential sorting of arrestins and 5-HT2A receptors during endocytosis J Biol Chem 276 8269–8277 Occurrence Handle10.1074/jbc.M006968200

    Article  Google Scholar 

  65. PW Mantyh CJ Allen JR Ghilardi et al. (1995) ArticleTitleRapid endocytosis of a G protein-coupled receptor: Substance P evoked internalization of its receptor in the rat striatum in vivo Proc Natl Acad Sci U S A 92 2622–2626

    Google Scholar 

  66. AM Garland EF Grady DG Payan et al. (1994) ArticleTitleAgonist-induced internalization of the substance P (NK1) receptor expressed in epithelial cells Biochem J 303 177–186

    Google Scholar 

  67. C Sternini M Spann B Anton et al. (1996) ArticleTitleAgonist-selective endocytosis of mu opioid receptor by neurons in vivo Proc Natl Acad Sci U S A 93 9241–9246 Occurrence Handle10.1073/pnas.93.17.9241

    Article  Google Scholar 

  68. C Sternini NC Brecha J Minnis et al. (2000) ArticleTitleRole of agonist-dependent receptor internalization in the regulation of mu opioid receptors Neuroscience 98 233–241 Occurrence Handle10.1016/S0306-4522(00)00118-4

    Article  Google Scholar 

  69. GY Ng G Varghese HT Chung et al. (1997) ArticleTitleResistance of the dopamine D2L receptor to desensitization accompanies the up-regulation of receptors on to the surface of Sf9 cells Endocrinology 138 4199–4206 Occurrence Handle10.1210/en.138.10.4199

    Article  Google Scholar 

  70. K Ito T Haga J Lameh W Sadee (1999) ArticleTitleSequestration of dopamine D2 receptors depends on coexpression of G-protein-coupled receptor kinases 2 or 5 Eur J Biochem 260 112–119 Occurrence Handle10.1046/j.1432-1327.1999.00125.x

    Article  Google Scholar 

  71. KM Kim KJ Valenzano SR Robinson et al. (2001) ArticleTitleDifferential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and {beta}-arrestins J Biol Chem 25 25

    Google Scholar 

  72. AC Barton LE Black DR Sibley (1991) ArticleTitleAgonist-induced desensitization of D2 dopamine receptors in human Y-79 retinoblastoma cells Mol Pharmacol 39 650–658

    Google Scholar 

  73. M Itokawa M Toru K Ito et al. (1996) ArticleTitleSequestration of the short and long isoforms of dopamine D2 receptors expressed in Chinese hamster ovary cells Mol Pharmacol 49 560–566

    Google Scholar 

  74. JE Leysen W Gommeren PM Laduron (1978) ArticleTitleSpiperone: A ligand of choice for neuroleptic receptors: 1. Kinetics and characteristics of in vitro binding Biochem Pharmacol 27 307–316 Occurrence Handle10.1016/0006-2952(78)90233-2

    Article  Google Scholar 

  75. C Kohler H Hall SO Ogren L Gawell (1985) ArticleTitleSpecific in vitro and in vivo binding of 3H-raclopride. A potent substituted benzamide drug with high affinity for dopamine D2-receptors in the rat brain Biochem Pharmacol 34 2251–2259 Occurrence Handle10.1016/0006-2952(85)90778-6

    Article  Google Scholar 

  76. RA Lyon M Titeler JJ Frost et al. (1986) ArticleTitle3H-3-N-methylspiperone labels D2 dopamine receptors in basal ganglia and S2 serotonin receptors in cerebral cortex J Neurosci 6 2941–2949

    Google Scholar 

  77. RA Williamson PG Strange (1990) ArticleTitleEvidence for the importance of a carboxyl group in the binding of ligands to the D2 dopamine receptor J Neurochem 55 1357–1365

    Google Scholar 

  78. KA Neve (1991) ArticleTitleRegulation of dopamine D2 receptors by sodium and pH Mol Pharmacol 39 570–578

    Google Scholar 

  79. JP Presland PG Strange (1991) ArticleTitlepH dependence of sulpiride binding to D2 dopamine receptors in bovine brain Biochem Pharmacol 41 R9–R12 Occurrence Handle10.1016/0006-2952(91)90187-A

    Article  Google Scholar 

  80. Q Al-Awqati (1986) ArticleTitleProton-translocating ATPases Annu Rev Cell Biol 2 179–199 Occurrence Handle10.1146/annurev.cb.02.110186.001143

    Article  Google Scholar 

  81. B Tycko FR Maxfield (1982) ArticleTitleRapid acidification of endocytic vesicles containing alpha 2-macroglobulin Cell 28 643–651 Occurrence Handle10.1016/0092-8674(82)90219-7

    Article  Google Scholar 

  82. CG Davis JL Goldstein TC Sudhof et al. (1987) ArticleTitleAcid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region Nature 326 760–765 Occurrence Handle10.1038/326760a0

    Article  Google Scholar 

  83. M DiPaola FR Maxfield (1984) ArticleTitleConformational changes in the receptors for epidermal growth factor and asialoglycoproteins induced by the mildly acidic pH found in endocytic vesicles J Biol Chem 259 9163–9171

    Google Scholar 

  84. DJ Yamashiro LA Borden FR Maxfield (1989) ArticleTitleKinetics of alpha 2-macroglobulin endocytosis and degradation in mutant and wild-type Chinese hamster ovary cells J Cell Physiol 139 377–382

    Google Scholar 

  85. LA Borden R Einstein CA Gabel FR Maxfield (1990) ArticleTitleAcidification-dependent dissociation of endocytosed insulin precedes that of endocytosed proteins bearing the mannose 6-phosphate recognition marker J Biol Chem 265 8497–8504

    Google Scholar 

  86. PO Koh AS Undie N Kabbani et al. (2003) ArticleTitleUp-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients Proc Natl Acad Sci U S A 100 313–317 Occurrence Handle10.1073/pnas.232693499

    Article  Google Scholar 

  87. C Bergson R Levenson PS Goldman-Rakic MS Lidow (2003) ArticleTitleDopamine receptor-interacting proteins: The Ca2+ connection in dopamine signaling Trends Pharmacol Sci 24 486–492 Occurrence Handle10.1016/S0165-6147(03)00232-3

    Article  Google Scholar 

Download references

Acknowledgment

The author thanks Shitij Kapur, MD, PhD, for fruitful discussions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Ginovart PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginovart, N. Imaging the Dopamine System with In Vivo [11C]raclopride Displacement Studies: Understanding the True Mechanism. Mol Imaging Biol 7, 45–52 (2005). https://doi.org/10.1007/s11307-005-0932-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-005-0932-0

Key words

Navigation