Skip to main content

Advertisement

Log in

Mycobacteria-Induced Suppression of Autoimmunity in the Central Nervous System

  • Invited Review
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Mycobacterial suppression of central nervous system (CNS) autoimmunity has been demonstrated in various experimental models, epidemiological studies, and clinical trials. Recent studies have led to an increased understanding of the cellular and molecular interactions involved in the pathogenesis of autoimmune diseases and of mycobacterial immunity. Here, we review some of the mechanisms by which mycobacterial infection might modulate the clinical course of CNS autoimmunity. A more complete understanding of these mechanisms may lead to the development of novel immunotherapeutic tools for treating autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel B, Thieblemont N, Quesniaux VJ, Brown N, Mpagi J, Miyake K, Bihl F, Ryffel B (2002) Toll-like receptor 4 expression is required to control chronic mycobacterium tuberculosis infection in mice. J Immunol 169(6):3155–3162

    CAS  PubMed  Google Scholar 

  • Agarwal S, Misra R, Aggarwal A (2008) Interleukin 17 levels are increased in juvenile idiopathic arthritis synovial fluid and induce synovial fibroblasts to produce proinflammatory cytokines and matrix metalloproteinases. J Rheumatol 35(3):515–519

    CAS  PubMed  Google Scholar 

  • Algood HM, Chan J, Flynn JL (2003) Chemokines and tuberculosis. Cytokine Growth Factor Rev 14(6):467–477

    Article  CAS  PubMed  Google Scholar 

  • Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Filì L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E, Romagnani S (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204(8):1849–1861

    Article  CAS  PubMed  Google Scholar 

  • Ben-Nun A, Yossefi S, Lehmann D (1993) Protection against autoimmune disease by bacterial agents. Ii. Ppd and pertussis toxin as proteins active in protecting mice against experimental autoimmune encephalomyelitis. Eur J Immunol 23(3):689–696

    Article  CAS  PubMed  Google Scholar 

  • Bettelli E, Oukka M, Kuchroo VK (2007) T(h)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8(4):345–350

    Article  CAS  PubMed  Google Scholar 

  • Bush KA, Farmer KM, Walker JS, Kirkham BW (2002) Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor igg1 fc fusion protein. Arthritis Rheum 46(3):802–805

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Langrish CL, McKenzie B, Joyce-Shaikh B, Stumhofer JS, McClanahan T, Blumenschein W, Churakovsa T, Low J, Presta L, Hunter CA, Kastelein RA, Cua DJ (2006) Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116(5):1317–1326

    Article  CAS  PubMed  Google Scholar 

  • Christen U, Benke D, Wolfe T, Rodrigo E, Rhode A, Hughes AC, Oldstone MB, von Herrath MG (2004) Cure of prediabetic mice by viral infections involves lymphocyte recruitment along an ip-10 gradient. J Clin Invest 113(1):74–84

    CAS  PubMed  Google Scholar 

  • Chu CQ, Wittmer S, Dalton DK (2000) Failure to suppress the expansion of the activated cd4 t cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J Exp Med 192(1):123–128

    Article  CAS  PubMed  Google Scholar 

  • Classen JB, Classen DC (1999) Immunization in the first month of life may explain decline in incidence of iddm in the netherlands. Autoimmunity 31(1):43–45

    Article  CAS  PubMed  Google Scholar 

  • Co DO, Hogan LH, Kim SI, Sandor M (2004) Mycobacterial granulomas: keys to a long-lasting host-pathogen relationship. Clin Immunol 113(2):130–136

    Article  CAS  PubMed  Google Scholar 

  • Co DO, Hogan LH, Karman J, Heninger E, Vang S, Wells K, Kawaoka Y, Sandor M (2006) Interactions between t cells responding to concurrent mycobacterial and influenza infections. J Immunol 177(12):8456–8465

    CAS  PubMed  Google Scholar 

  • Cook DN, Pisetsky DS, Schwartz DA (2004) Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5(10):975–979

    Article  CAS  PubMed  Google Scholar 

  • Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178(6):2243–2247

    Article  CAS  PubMed  Google Scholar 

  • Cooper AM, Adams LB, Dalton DK, Appelberg R, Ehlers S (2002) Ifn-gamma and no in mycobacterial disease: new jobs for old hands. Trends Microbiol 10(5):221–226

    Article  CAS  PubMed  Google Scholar 

  • Cosma CL, Sherman DR, Ramakrishnan L (2003) The secret lives of the pathogenic mycobacteria. Annu Rev Microbiol 57:641–676

    Article  CAS  PubMed  Google Scholar 

  • Dalton DK, Haynes L, Chu CQ, Swain SL, Wittmer S (2000) Interferon gamma eliminates responding cd4 t cells during mycobacterial infection by inducing apoptosis of activated cd4 t cells. J Exp Med 192(1):117–122

    Article  CAS  PubMed  Google Scholar 

  • Drennan MB, Nicolle D, Quesniaux VJ, Jacobs M, Allie N, Mpagi J, Fremond C, Wagner H, Kirschning C, Ryffel B (2004) Toll-like receptor 2-deficient mice succumb to mycobacterium tuberculosis infection. Am J Pathol 164(1):49–57

    CAS  PubMed  Google Scholar 

  • Farez MF, Quintana FJ, Gandhi R, Izquierdo G, Lucas M, Weiner HL (2009) Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat Immunol 2009 10(9):958–64. Erratum in: (2010). Nat Immunol 11(1):97

    Article  CAS  Google Scholar 

  • Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of il-10. Nat Immunol 3(10):944–950

    Article  CAS  PubMed  Google Scholar 

  • Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, Van Kooyk Y (2003) Mycobacteria target dc-sign to suppress dendritic cell function. J Exp Med 197(1):7–17

    Article  CAS  PubMed  Google Scholar 

  • Gilbertson B, Zhong J, Cheers C (1999) Anergy, ifn-gamma production, and apoptosis in terminal infection of mice with Mycobacterium avium. J Immunol 163(4):2073–2080

    CAS  PubMed  Google Scholar 

  • Gilleron M, Quesniaux VF, Puzo G (2003) Acylation state of the phosphatidylinositol hexamannosides from Mycobacterium bovis bacillus calmette guerin and mycobacterium tuberculosis h37rv and its implication in toll-like receptor response. J Biol Chem 278(32):29880–29889

    Article  CAS  PubMed  Google Scholar 

  • Hofstetter HH, Ibrahim SM, Koczan D, Kruse N, Weishaupt A, Toyka KV, Gold R (2005) Therapeutic efficacy of il-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell Immunol 237(2):123–130

    Article  CAS  PubMed  Google Scholar 

  • Hogan LH, Macvilay K, Barger B, Co D, Malkovska I, Fennelly G, Sandor M (2001) Mycobacterium bovis strain bacillus calmette-guerin-induced liver granulomas contain a diverse tcr repertoire, but a monoclonal t cell population is sufficient for protective granuloma formation. J Immunol 166(10):6367–6375

    CAS  PubMed  Google Scholar 

  • Jo EK (2008) Mycobacterial interaction with innate receptors: Tlrs, c-type lectins, and nlrs. Curr Opin Infect Dis 21(3):279–286

    Article  CAS  PubMed  Google Scholar 

  • Kolls JK, Lindén A (2004) Interleukin-17 family members and inflammation. Immunity 21(4):467–476

    Article  CAS  PubMed  Google Scholar 

  • Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y (2006) Il-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177(1):566–573

    CAS  PubMed  Google Scholar 

  • Kursar M, Koch M, Mittrucker HW, Nouailles G, Bonhagen K, Kamradt T, Kaufmann SH (2007) Cutting edge: regulatory t cells prevent efficient clearance of mycobacterium tuberculosis. J Immunol 178(5):2661–2665

    CAS  PubMed  Google Scholar 

  • Laan M, Cui ZH, Hoshino H, Lötvall J, Sjöstrand M, Gruenert DC, Skoogh BE, Lindén A (1999) Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J Immunol 162(4):2347–2352

    CAS  PubMed  Google Scholar 

  • Lampropoulou V, Hoehlig K, Roch T, Neves P, Calderon Gomez E, Sweenie CH, Hao Y, Freitas AA, Steinhoff U, Anderton SM, Fillatreau S (2008) Tlr-activated b cells suppress t cell-mediated autoimmunity. J Immunol 180(7):4763–4773

    CAS  PubMed  Google Scholar 

  • Lee J, Reinke EK, Zozulya AL, Sandor M, Fabry Z (2008) Mycobacterium bovis bacille calmette-guerin infection in the CNS suppresses experimental autoimmune encephalomyelitis and th17 responses in an ifn-gamma-independent manner. J Immunol 181(9):6201–6212

    CAS  PubMed  Google Scholar 

  • Lehmann D, Ben-Nun A (1992) Bacterial agents protect against autoimmune disease. I. Mice pre-exposed to bordetella pertussis or mycobacterium tuberculosis are highly refractory to induction of experimental autoimmune encephalomyelitis. J Autoimmun 5(6):675–690

    Article  CAS  PubMed  Google Scholar 

  • Li L, Lao SH, Wu CY (2007a) Increased frequency of cd4(+)cd25(high) treg cells inhibit bcg-specific induction of ifn-gamma by cd4(+) t cells from tb patients. Tuberculosis (Edinb) 87(6):526–534

    Article  CAS  Google Scholar 

  • Li X, McKinstry KK, Swain SL, Dalton DK (2007b) Ifn-gamma acts directly on activated cd4+ t cells during mycobacterial infection to promote apoptosis by inducing components of the intracellular apoptosis machinery and by inducing extracellular proapoptotic signals. J Immunol 179(2):939–949

    CAS  Google Scholar 

  • Mann MK, Maresz K, Shriver LP, Tan Y, Dittel BN (2007) B cell regulation of cd4 + cd25+ t regulatory cells and il-10 via b7 is essential for recovery from experimental autoimmune encephalomyelitis. J Immunol 178(6):3447–3456

    CAS  PubMed  Google Scholar 

  • Martins TC, Aguas AP (1996) Changes in B and T lymphocytes associated with mycobacteria-induced protection of NOD mice from diabetes. J Autoimmune 9(4):501–507

    Article  CAS  Google Scholar 

  • Mauri C, Ehrenstein MR (2008) The 'short' history of regulatory b cells. Trends Immunol 29(1):34–40

    Article  CAS  PubMed  Google Scholar 

  • Mauri C, Gray D, Mushtaq N, Londei M (2003) Prevention of arthritis by interleukin 10-producing b cells. J Exp Med 197(4):489–501

    Article  CAS  PubMed  Google Scholar 

  • McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, McClanahan TK, O'Shea JJ, Cua DJ (2007) Nat Immunol 10(3):314–324

    Article  CAS  Google Scholar 

  • Means TK, Lien E, Yoshimura A, Wang S, Golenbock DT, Fenton MJ (1999) The cd14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for toll-like receptors. J Immunol 163(12):6748–6755

    CAS  PubMed  Google Scholar 

  • Miossec P (2003) Interleukin-17 in rheumatoid arthritis: if T cells were to contribute to inflammation and destruction through synergy. Arthritis Rheum 48(3):594–601

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK (2002) Chronic intestinal inflammatory condition generates il-10-producing regulatory b cell subset characterized by cd1d upregulation. Immunity 16(2):219–230

    Article  CAS  PubMed  Google Scholar 

  • Nigou J, Zelle-Rieser C, Gilleron M, Thurnher M, Puzo G (2001) Mannosylated lipoarabinomannans inhibit il-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol 166(12):7477–7485

    CAS  PubMed  Google Scholar 

  • O'Connor RA, Wittmer S, Dalton DK (2005) Infection-induced apoptosis deletes bystander cd4+ t cells: a mechanism for suppression of autoimmunity during bcg infection. J Autoimmun 24(2):93–100

    Article  PubMed  CAS  Google Scholar 

  • Pai RK, Convery M, Hamilton TA, Boom WH, Harding CV (2003) Inhibition of ifn-gamma-induced class ii transactivator expression by a 19-kda lipoprotein from mycobacterium tuberculosis: a potential mechanism for immune evasion. J Immunol 171(1):175–184

    CAS  PubMed  Google Scholar 

  • Paolillo A, Buzzi MG, Giugni E, Sabatini U, Bastianello S, Pozzilli C, Salvetti M, Ristori G (2003) The effect of bacille calmette-guerin on the evolution of new enhancing lesions to hypointense t1 lesions in relapsing remitting ms. J Neurol 250(2):247–248

    Article  CAS  PubMed  Google Scholar 

  • Parent ME, Siemiatycki J, Menzies R, Fritschi L, Colle E (1997) Bacille calmette-guerin vaccination and incidence of iddm in montreal, canada. Diabetes Care 20(5):767–772

    Article  CAS  PubMed  Google Scholar 

  • Pathak SK, Basu S, Basu KK, Banerjee A, Pathak S, Bhattacharyya A, Kaisho T, Kundu M, Basu J (2007) Direct extracellular interaction between the early secreted antigen esat-6 of mycobacterium tuberculosis and tlr2 inhibits tlr signaling in macrophages. Nat Immunol 8(6):610–618

    Article  CAS  PubMed  Google Scholar 

  • Peters W, Ernst JD (2003) Mechanisms of cell recruitment in the immune response to mycobacterium tuberculosis. Microbes Infect 5(2):151–158

    Article  CAS  PubMed  Google Scholar 

  • Qin HY, Sadelain MW, Hitchon C, Lauzon J, Singh B (1993) Complete freund's adjuvant-induced t cells prevent the development and adoptive transfer of diabetes in nonobese diabetic mice. J Immunol 150(5):2072–2080

    CAS  PubMed  Google Scholar 

  • Qin HY, Chaturvedi P, Singh B (2004) In vivo apoptosis of diabetogenic t cells in nod mice by ifn-gamma/tnf-alpha. Int Immunol 16(12):1723–1732

    Article  CAS  PubMed  Google Scholar 

  • Qin HY, Mukherjee R, Lee-Chan E, Ewen C, Bleackley RC, Singh B (2006) A novel mechanism of regulatory t cell-mediated down-regulation of autoimmunity. Int Immunol 18(7):1001–1015

    Article  CAS  PubMed  Google Scholar 

  • Quesniaux VJ, Nicolle DM, Torres D, Kremer L, Guerardel Y, Nigou J, Puzo G, Erard F, Ryffel B (2004) Toll-like receptor 2 (tlr2)-dependent-positive and tlr2-independent-negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J Immunol 172(7):4425–4434

    CAS  PubMed  Google Scholar 

  • Raupach B, Kaufmann SH (2001) Immune responses to intracellular bacteria. Curr Opin Immunol 13(4):417–428

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro-Rodrigues R, Resende Co T, Rojas R, Toossi Z, Dietze R, Boom WH, Maciel E, Hirsch CS (2006) A role for cd4+cd25+ t cells in regulation of the immune response during human tuberculosis. Clin Exp Immunol 144(1):25–34

    Article  CAS  PubMed  Google Scholar 

  • Ristori G, Buzzi MG, Sabatini U, Giugni E, Bastianello S, Viselli F, Buttinelli C, Ruggieri S, Colonnese C, Pozzilli C, Salvetti M (1999) Use of bacille calmette-guerin (bcg) in multiple sclerosis. Neurology 53(7):1588–1589

    CAS  PubMed  Google Scholar 

  • Roark CL, Simonian PL, Fontenot AP, Born WK, O'Brien RL (2008) gammadelta T cells: an important source of IL-17. Curr Opin Immunol 20(3):353–357

    Article  CAS  PubMed  Google Scholar 

  • Rook GA, Adams V, Hunt J, Palmer R, Martinelli R, Brunet LR (2004) Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders. Springer Semin Immunopathol 25(3–4):237–255

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory t cells and immune tolerance. Cell 133(5):775–787

    Article  CAS  PubMed  Google Scholar 

  • Sandor M, Weinstock JV, Wynn TA (2003) Granulomas in schistosome and mycobacterial infections: a model of local immune responses. Trends Immunol 24(1):44–52

    Google Scholar 

  • Sanjeevi CB, Das AK, Shtauvere-Brameus A (2002) Bcg vaccination and gad65 and ia-2 autoantibodies in autoimmune diabetes in southern india. Ann N Y Acad Sci 958:293–296

    Article  CAS  PubMed  Google Scholar 

  • Scott-Browne JP, Shafiani S, Tucker-Heard G, Ishida-Tsubota K, Fontenot JD, Rudensky AY, Bevan MJ, Urdahl KB (2007) Expansion and function of foxp3-expressing t regulatory cells during tuberculosis. J Exp Med 204(9):2159–2169

    Article  CAS  PubMed  Google Scholar 

  • Sewell DL, Reinke EK, Hogan LH, Sandor M, Fabry Z (2002) Immunoregulation of CNS autoimmunity by helminth and mycobacterial infections. Immunol Lett 82(1–2):101–110

    Google Scholar 

  • Sewell DL, Reinke EK, Co DO, Hogan LH, Fritz RB, Sandor M, Fabry Z (2003) Infection with Mycobacterium bovis bcg diverts traffic of myelin oligodendroglial glycoprotein autoantigen-specific t cells away from the central nervous system and ameliorates experimental autoimmune encephalomyelitis. Clin Diagn Lab Immunol 10(4):564–572

    CAS  PubMed  Google Scholar 

  • Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y (2007) Resident V{delta}1 + gamma}{delta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol 178(7):4466–4472

    CAS  PubMed  Google Scholar 

  • Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa MT, Engele M, Sieling PA, Barnes PF, Rollinghoff M, Bolcskei PL, Wagner M, Akira S, Norgard MV, Belisle JT, Godowski PJ, Bloom BR, Modlin RL (2001) Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291(5508):1544–1547

    Article  CAS  PubMed  Google Scholar 

  • Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, Suda T, Sudo K, Nakae S, Iwakura Y (2007) IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis Bacille Calmette–Guerin infection. J Immunol 178(6):3786–3796

    CAS  PubMed  Google Scholar 

  • Visser L, Melief MJ, van Riel D, van Meurs M, Sick EA, Inamura S, Bajramovic JJ, Amor S, Hintzen RQ, Boven LA, 't Hart BA, Laman JD (2006) Phagocytes containing a disease-promoting Toll-like receptor/Nod ligand are present in the brain during demyelinating disease in primates. Am J Pathol 169(5):1671–1685

    Article  CAS  PubMed  Google Scholar 

  • Xing Z, Zganiacz A, Wang J, Sharma SK (2001) Enhanced protection against fatal mycobacterial infection in scid beige mice by reshaping innate immunity with ifn-gamma transgene. J Immunol 167(1):375–383

    CAS  PubMed  Google Scholar 

  • Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296(5567):490–494

    Article  CAS  PubMed  Google Scholar 

  • Yu JJ, Ruddy MJ, Wong GC, Sfintescu C, Baker PJ, Smith JB, Evans RT, Gaffen SL (2007) An essential role for il-17 in preventing pathogen-initiated bone destruction: recruitment of neutrophils to inflamed bone requires il-17 receptor-dependent signals. Blood 109(9):3794–3802

    Article  CAS  PubMed  Google Scholar 

  • Zekki H, Feinstein DL, Rivest S (2002) The clinical course of experimental autoimmune encephalomyelitis is associated with a profound and sustained transcriptional activation of the genes encoding toll-like receptor 2 and CD14 in the mouse CNS. Brain Pathol 12(3):308–319

    Article  CAS  PubMed  Google Scholar 

  • Zuany-Amorim C, Sawicka E, Manlius C, Le Moine A, Brunet LR, Kemeny DM, Bowen G, Rook G, Walker C (2002) Suppression of airway eosinophilia by killed mycobacterium vaccae-induced allergen-specific regulatory t-cells. Nat Med 8(6):625–629

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no financial or personal conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsanna Fabry.

Additional information

Guarantor of the work: Zsuzsanna Fabry

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Sandor, M., Heninger, E. et al. Mycobacteria-Induced Suppression of Autoimmunity in the Central Nervous System. J Neuroimmune Pharmacol 5, 210–219 (2010). https://doi.org/10.1007/s11481-010-9199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-010-9199-6

Keywords

Navigation