Skip to main content
Log in

Definitions of state variables and state space for brain-computer interface

Part 1. Multiple hierarchical levels of brain function

  • RESEARCH ARTICLE
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Neocortical state variables are defined and evaluated at three levels: microscopic using multiple spike activity (MSA), mesoscopic using local field potentials (LFP) and electrocorticograms (ECoG), and macroscopic using electroencephalograms (EEG) and brain imaging. Transactions between levels occur in all areas of cortex, upwardly by integration (abstraction, generalization) and downwardly by differentiation (speciation). The levels are joined by circular causality: microscopic activity upwardly creates mesoscopic order parameters, which downwardly constrain the microscopic activity that creates them. Integration dominates in sensory cortices. Microscopic activity evoked by receptor input in sensation induces emergence of mesoscopic activity in perception, followed by integration of perceptual activity into macroscopic activity in concept formation. The reverse process dominates in motor cortices, where the macroscopic activity embodying the concepts supports predictions of future states as goals. These macroscopic states are conceived to order mesoscopic activity in patterns that constitute plans for actions to achieve the goals. These planning patterns are conceived to provide frames in which the microscopic activity evolves in trajectories that adapted to the immediate environmental conditions detected by new stimuli. This circular sequence forms the action-perception cycle. Its upward limb is understood through correlation of sensory cortical activity with behavior. Now brain-machine interfaces (BMI) offer a means to understand the downward sequence through correlation of behavior with motor cortical activity, beginning with macroscopic goal states and concluding with recording of microscopic MSA trajectories that operate neuroprostheses. Part 1 develops a hypothesis that describes qualitatively the neurodynamics that supports the action-perception cycle and derivative reflex arc. Part 2 describes episodic, “cinematographic–spatial pattern formation and predicts some properties of the macroscopic and mesoscopic frames by which the embedded trajectories of the microscopic activity of cortical sensorimotor neurons might be organized and controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott A (2006) Neuroprosthetics: in search of a sixth sense. Nature 442:125–27

    Article  CAS  PubMed  Google Scholar 

  • Andersen RA, Musallam S, Pesaran B (2004) Selecting the signals for a brain-machine interface. Curr Opin Neurobiol 14(6):720–26

    Article  CAS  PubMed  Google Scholar 

  • Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge UP, New York

    Google Scholar 

  • Barabásí A-L (2002) Linked. The new science of networks. Perseus, Cambridge MA

    Google Scholar 

  • Barrie JM, Freeman WJ, Lenhart M (1996) Modulation by discriminative training of spatial patterns of gamma EEG amplitude and phase in neocortex of rabbits. J Neurophysiol 76:520–39

    CAS  PubMed  Google Scholar 

  • Barrie JM, Holcman D, Freeman WJ. (1999) Statistical evaluation of clusters derived by nonlinear mapping of EEG spatial patterns. J Neurosci Meth 90:87–5

    Article  CAS  Google Scholar 

  • Basar E (1998) Brain function and oscillations. 1. Principles and approaches. 2. Integrative brain function, neurophysiology and cognitive operations. Springer-Verlag, Berlin

    Google Scholar 

  • Blanche TJ, Spacek MA, Hetke JF, Swindale NV (2005) Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording. J Neurophysiol 93(5):2987–000

    Article  PubMed  Google Scholar 

  • Blankertz B, Mueller KR, Curio G, Vaughan TM, Schalk G, Wolpaw JR, Schloegl A, Neuper C, Pfurtscheller G, Hinterberger T, Schoeder M, Birbaumer M. (2004) The BCI Competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans Biomed Eng 51:1044–051

    Article  PubMed  Google Scholar 

  • Bok ST (1959) Histonomy of the cerebral cortex. Elsevier, Amsterdam

    Google Scholar 

  • Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity. 2nd ed. Springer-Verlag, Berlin

    Google Scholar 

  • Bressler SL, Freeman WJ (1980) Frequency analysis of olfactory system EEG in cat, rabbit and rat. Electroencephalogr clin Neurophysiol 50:19–4

    Article  CAS  PubMed  Google Scholar 

  • Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5:2–6

    Article  Google Scholar 

  • Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MAL (2003) Learning to control a brain–machine interface for reaching and grasping by primates. PLoS Biol 1:193–08

    Article  CAS  Google Scholar 

  • Carmena JM, Lebedev MA, Henriquez CA, Nicolelis MAL (2005) Stable ensemble performance with single-neuron variability during reaching movements in primates. J Neurosci 25(46):10712–0716

    Article  CAS  PubMed  Google Scholar 

  • Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature Neurosci 2:664–70

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Gao X, Gao S, Xu D (2002) Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng 49(10):1181–186 SSVEP

    Article  PubMed  Google Scholar 

  • Cohen D, Nicolelis MAL (2004) Reduction of single-neuron firing uncertainty by cortical ensembles during motor skill learning. J Neurosci 24:3574–582

    Article  CAS  PubMed  Google Scholar 

  • DiGiovanna J, Sanchez JC, Principe JC (2006) Improved linear BMI systems via population averaging. Proc EMBS

  • Donoghue JP (2002) Connecting cortex to machines: recent advances in brain interfaces. Nat Neurosci Suppl 1085–088

  • Ferster CB, Skinner BF (1957) Schedules of reinforcement. NJPrentice-Hall, Englewood Cliffs

    Book  Google Scholar 

  • Fingelkurts AnA, Fingelkurts AlA (2004) Making complexity simpler: multivariability and metastability in the brain. Int J Neurosci 114:843–62

    Article  PubMed  Google Scholar 

  • Freeman WJ (1975) Mass action in the nervous system. New York: Academic. E-format (2004): http://sulcus.berkeley.edu/MANSWWW/MANSWWW.html

  • Freeman WJ (1979) Nonlinear gain mediating cortical stimulus-response relations. Biol Cybern 33:237–47

    Article  CAS  PubMed  Google Scholar 

  • Freeman WJ (2000) Neurodynamics: an exploration of mesoscopic brain dynamics. Springer, London

    Google Scholar 

  • Freeman WJ (2004a) Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude. Clin Neurophysiol 115:2077–088

    Article  Google Scholar 

  • Freeman WJ (2004b) Origin, structure, and role of background EEG activity. Part 2. Analytic phase. Clin Neurophysiol 115:2089–107

    Article  Google Scholar 

  • Freeman WJ (2005a) Origin, structure, and role of background EEG activity. Part 3. Neural frame classification. Clin Neurophysiol 116(5):1118–129

    Article  Google Scholar 

  • Freeman WJ (2005) A field-theoretic approach to understanding scale-free neocortical dynamics. Biol Cybern 92/6:350–59

    Article  Google Scholar 

  • Freeman WJ (2006) Origin, structure, and role of background EEG activity. Part 4. Neural frame simulation. Clin Neurophysiol 117:572–89

    Article  PubMed  Google Scholar 

  • Freeman WJ, Barrie JM (2000) Analysis of spatial patterns of phase in neocortical EEGs in rabbit. J Neurophysiol 84:1266–278

    Google Scholar 

  • Freeman WJ, Burke BC (2003) A neurobiological theory of meaning in perception. Part 4. Multicortical patterns of amplitude modulation in gamma EEG. Int J Bifurc Chaos 13:2857–866

    Article  Google Scholar 

  • Freeman WJ, Grajski KA (1987) Relation of olfactory EEG to behavior: factor analysis. Behav Neurosci 101:766–77

    Article  CAS  PubMed  Google Scholar 

  • Freeman WJ, Rogers LJ (2003) A neurobiological theory of meaning in perception. Part 5. Multicortical patterns of phase modulation in gamma EEG. Int J Bifurc Chaos 13:2867–887

    Article  Google Scholar 

  • Freeman WJ, Rogers LJ, Holmes MD, Silbergeld DL (2000) Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J Neurosci Meth 95:111–21

    Article  CAS  Google Scholar 

  • Freeman WJ, Vitiello G (2006) Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Phys Life Rev 3:93–18

    Article  Google Scholar 

  • Gao X, Xu D, Cheng M, Gao S (2003) A BCI-based environmental controller for the motion-disabled. IEEE Trans Rehab Engin 11(2):137–40

    Article  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–419

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez SL, Grave de Peralta R, Thut G, Millán J del R, Morier P, Landis T (2006) Very high frequency oscillations (VHFO) as a predictor of movement intentions. NeuroImage, Short Communication, 32:170–79

  • Granit R, Kernell D, Shortess GK (1963) Quantitative aspects of repetitive firing of mammalian motoneurons caused by injected currents. J Physiol 168:453–72

    Google Scholar 

  • Granit R, Renkin B (1961) Net depolarization and discharge rate␣of motoneurons, as measured by recurrent inhibition. J␣Physiol 158:461–75

    CAS  PubMed  Google Scholar 

  • Haken H (1983) Synergetics: an introduction. Springer-Verlag, Berlin

    Google Scholar 

  • Hinterberger T, Kubler A, Kaiser J, Neumann N, Birbaumer N (2003) A brain-computer interface (BCI) for the locked-in: comparison of different EEG classifications for the thought translation device. Clin Neurophysiol 114:416–25

    Article  PubMed  Google Scholar 

  • Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–72

    Article  CAS  PubMed  Google Scholar 

  • Houk JC (2005) Agents of the mind. Biol Cybern 92:427–37

    Article  PubMed  Google Scholar 

  • Houk JC, Wise SP (1995) Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cerebral Cortex 5:95–10

    Article  CAS  PubMed  Google Scholar 

  • Kay LM, Freeman WJ (1998) Bidirectional processing in the olfactory-limbic axis during olfactory behavior. Behav Neurosci 112:541–53

    Article  CAS  PubMed  Google Scholar 

  • Kipke DR, Vetter RJ, Williams JC (2003) Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans Rehab Engin 11:151–55

    Article  Google Scholar 

  • Kozma R, Freeman WJ (2001) Chaotic resonance: methods and applications for robust classification of noisy and variable patterns. Int J Bifurc Chaos 10:2307–322

    Google Scholar 

  • Kozma R, Freeman WJ, Erdí P (2003) The KIV model –nonlinear spatiotemporal dynamics of the primordial vertebrate forebrain. Neurocomputing 52:819–26

    Article  Google Scholar 

  • Kozma R, Puljic M, Balister P, Bollobas B, Freeman WJ (2004) Neuropercolation: a random cellular automata approach to spatiotemporal neurodynamics. Ch. in: Lecture notes in computer science: 141.225.40.170 springerlink.com. http://repositories.cdlib.org/postprints/1013

  • Lashley KS (1942) The problem of cerebral organization in vision. In: Cattell J (ed) Biological symposia VII:301–22

  • Lee D, Port NL, Kruse W, Georgopoulos AP (1998) Variability and correlated noise in the discharge of neurons in motor and parietal areas of the primate cortex. J Neurosci 18:1161–170

    CAS  PubMed  Google Scholar 

  • Li X, Li G, Wang L, Freeman WJ (2006) A study on a bionic pattern classifier based on olfactory neural system. Int J Bifurc Chaos (in press)

  • Liley DTJ, Wright JJ (1994) Intracortical connectivity of pyramidal and stellate cells: estimates of synaptic densities and coupling symmetry. Network 5:175–89

    Article  Google Scholar 

  • Mehring C, Rickert J, Vaadia E, Cardoso de Oliveiera S, Aertsen A, Rotter S (2003) Inference of hand movements from local field potentials in monkey motor cortex. Nature Neurosci 6(12):1253–254

    Article  CAS  PubMed  Google Scholar 

  • Merleau-Ponty M (1945/1962) Phenomenology of perception. (C␣Smith, Trans.). Humanities Press, New York

  • Millay J (1999) Multidimensional mind: remote viewing in hyperspace. North Atlantic Books, Berkeley CA

    Google Scholar 

  • Miltner WHR, Barun C, Arnold M, Witte H, Taub E (1999) Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397:434–36

    Article  CAS  PubMed  Google Scholar 

  • Müller MM, Bosch J, Elbert T, Kreiter A, Valdes Sosa M, Valdes Sosa P, Rockstroh B (1996) Visually induced gamma band responses in human EEG –a link to animal studies. Exper Brain Res 112:96–12

    Google Scholar 

  • Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA (2004) Cognitive control signals for neural prosthetics. Science 305:258–62

    Article  CAS  PubMed  Google Scholar 

  • Nicolelis MAL (2001) Actions from thoughts. Nature 409:403–07

    Article  CAS  PubMed  Google Scholar 

  • Nicolelis MA (2003) Brain-machine interfaces to restore motor function and probe neural circuits. Nat Rev Neurosci 4(5):417–2

    Article  CAS  PubMed  Google Scholar 

  • Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging and interpretation at multiple scales. Electroenceph clin Neurophysiol 103:499–15

    Article  CAS  PubMed  Google Scholar 

  • Ohl FW, Scheich H, Freeman WJ (2001) Change in pattern of ongoing cortical activity with auditory category learning. Nature 412:733–36

    Article  CAS  PubMed  Google Scholar 

  • Othmer S, Othmer SF, Kaiser DA (1999) EEG biofeedback: an emerging model for its global efficacy. Ch. 11 In: Evans JR, Abarbanel A (eds) Introduction to quantitative EEG and neurofeedback. Academic, New York, pp. 243–10

    Chapter  Google Scholar 

  • Prigogine I (1980) From being to becoming: time and complexity in the physical sciences. W H Freeman, San Francisco

    Google Scholar 

  • Principe JC, Tavares VG, Harris JG, Freeman WJ (2001) Design and implementation of a biologically realistic olfactory cortex in analog VLSI. Proc IEEE 89:1030–051

    Article  Google Scholar 

  • Rodriguez E, George N, Lachaux J-P, Martinerie J, Renault B, Varela F (1999) Perception’s shadow: long-distance synchronization of human brain activity. Nature 397:430–33

    Article  CAS  PubMed  Google Scholar 

  • Sanchez JS, Carmena JM, Lebede MA, Nicolelis MAL, Harris JG, Principe JC (2004) Ascertaining the importance of neurons to develop better brain-computer interfaces. IEEE Trans Biomed Eng 51:943–53

    Article  PubMed  Google Scholar 

  • Sanchez JS, Carney PR, Principe JC (2006) Analysis of amplitude modulated control features for ECoG neuroprosthetics. IEEE Intern Conf Engin Biol Med (in press)

  • Schroeder M (1991) Fractals, chaos, power laws. WH Freeman, San Francisco

  • Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002) Instant neural control of a movement signal. Nature 416:141–42

    Article  CAS  PubMed  Google Scholar 

  • Sholl DW (1956) The organization of the cerebral cortex. Wiley, New York

    Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Ann Rev Neurosci 18:555–86

    Article  CAS  PubMed  Google Scholar 

  • Skarda CA, Freeman WJ (1987) How brains make chaos in order to make sense of the world. Behav Brain Sci 10:161–95

    Google Scholar 

  • Sperry RW (1950) Neural basis of the spontaneous optokinetic response. J Comp Physiol 43:482–89

    CAS  Google Scholar 

  • Stuart DG (2005) Integration of posture and movement: contributions from Sherrington, Hess and Bernstein. Human Movement Sci 24:621–43

    Article  Google Scholar 

  • Swadlow HA (1994) Efferent neurons and suspected interneurons in motor cortex of the awake rabbit: axonal properties, sensory receptive fields and subthreshold synaptic inputs. J␣Neurophysiol 71:437–53

    CAS  PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J (1996) Stimulus-specificity of phase-locked and non phase-locked 40-Hz visual responses in human. J Neurosci 16:4240–249

    CAS  PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J (1998) Induced gamma-band activity during the delay of a visual short-term memory task in humans. J Neurosci 18:4244–254

    CAS  PubMed  Google Scholar 

  • Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–832

    Article  CAS  PubMed  Google Scholar 

  • Tsuda I (2001) Toward an interpretation of dynamics neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24:793–47

    Article  CAS  PubMed  Google Scholar 

  • Von Holst E, Mittelstädt H (1950) Das Reafferenz Prinzip. Wechselwirkung zwischen Zentralnervensystem und Peripherie. Naturewissenschaften 37:464–76

    Article  Google Scholar 

  • von Neumann J (1958) The computer and the brain. New Haven CT, Yale UP

  • Wang Y, Sanchez JC, Principe JC, Mitzelfelt JD, Gunduz A (2006) Analysis of the correlation between local field potentials and neuronal firing rate in the motor cortex. Proc EMBS

  • Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, Kim J, Biggs SJ, Srinivasan MA, Nicolelis MAL (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408:361–65

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

I am grateful for permission from J. C. Sanchez, Department of Pediatrics, Division of Neurology, and P. C. Carney and J. C. Principe, Department of Electrical and Computer Engineering, University of Florida, Gainesville FL 32611 to use their figure illustrating intracranial recording.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Freeman.

Additional information

URL: http://sulcus.berkeley.edu

Appendix 1. Wave-pulse statistical relations

Appendix 1. Wave-pulse statistical relations

A continuous record is digitized at 1 KHz simultaneously of a spike train of a single neurons and the ECoG at the cortical site of penetration (Freeman 1975/2004). The ECoG is filtered in the pass band of the desired oscillatory frequency, e.g., 20–0 Hz. The spike train is accumulated to give n p ~10,000 pulses expressed as a series of 0’s and 1’s. The N values of ECoG values are normalized to zero mean and unit SD; an amplitude histogram is divided into 61 bins centered at 0 and ranging between ± 3 SD in steps of 0.1 SD. At each time step the question is asked, is there a pulse in any bin between T = 0 and T = ±T r time steps (e.g., T r = ±25 ms preceding and following T = 0 ms). A 1-D table of the pulse occurrences at each amplitude is accumulated at T = 0, p(v). The n v (v) values in each bin, n v , are divided by the total number of pairs to get the probability density for amplitude at T = 0:

$$ P\left( V \right) = {{n_v \left( v \right)} \mathord{\left/ {\vphantom {{n_v \left( v \right)} N}} \right. \kern-\nulldelimiterspace} N} $$
((1))

The number of pulses in each bin, n p (p,v) is divided by the total number of pairs to give the joint pulse-amplitude probability density at T = 0:

$$ P\left( {p \cap v} \right) = {{np\left( {p,v} \right)} \mathord{\left/ {\vphantom {{np\left( {p,v} \right)} N}} \right. \kern-\nulldelimiterspace} N} $$
((2))

The pulse probability density is divided by the amplitude probability density to give the pulse probability conditional on amplitude at T = 0:

$$ P\left( {p|v} \right) = {{P\left( {p \cap v} \right)} \mathord{\left/ {\vphantom {{P\left( {p \cap v} \right)} {p\left( v \right)}}} \right. \kern-\nulldelimiterspace} {p\left( v \right)}} $$
((3))

The algorithm is repeated at each time lag between − T r and +T r to get the pulse probability conditional on time and amplitude in 2-D, which is then normalized by dividing the function by the grand mean pulse probability, P o :

$$ P\left( {p|T \cap v} \right) = P\left( {p \cap T \cap v} \right)p\left( v \right) $$
((4))

The function is normalized by dividing all values by the grand mean pulse probability, P o to get the normalized conditional pulse probability (NCPD):

$$ P_n \left( {p|T \cap v} \right) = {{P\left( {p|T \cap v} \right)} \mathord{\left/ {\vphantom {{P\left( {p|T \cap v} \right)} {P_o }}} \right. \kern-\nulldelimiterspace} {P_o }} $$
((5))

The time dependence of the NCPD is found by averaging across the upper third of the range for v > 0, giving the pulse probability wave that is comparable to the autocorrelation of the filtered ECoG or LFP:

$$ P_{n,v} \left( T \right) = {1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}\sum {P_n \left( {p|T \cap v} \right)} , SD \leqslant v_k \geqslant 3SD $$
((6))

The sigmoid curve is the NCPD on amplitude is estimated by averaging over lag times at k values where the deviation of P v (T) above zero is maximal:

$$ P_{n,t} \left( T \right) = {1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}\sum {P_n \left( {p|T \cap v} \right)} , P\left( {T_k } \right) > > P_o $$
((7))

The sigmoid curve is fitted to the data (Fig. 1A) in order to evaluate the upper asymptote, Q m , as given in the equation inset with the data. The asymptote varies in proportion to the degree of arousal, and it has differing mean values for differing populations in the olfactory and limbic systems. The forward gain of the population is given by the derivative of the sigmoid curve, dq/dv. Two examples are shown for Q m  = 2 in behavioral rest and Q m  = 5 in arousal (Freeman 2000) for comparison with the numerical derivative in Fig. 1A. The maximal gain, v max = ln Q m from the second derivative set to 0, is displaced to the excitatory side. This asymmetry underlies the input-dependent nonlinearity of cortical dynamics, which is required for the destabilization in spontaneous breaking of symmetry by state transitions (Freeman and Vitiello 2006). From Freeman (1979; reprinted Ch. 10, 2000)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, W.J. Definitions of state variables and state space for brain-computer interface. Cogn Neurodyn 1, 3–14 (2007). https://doi.org/10.1007/s11571-006-9001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-006-9001-x

Keywords

Navigation