Skip to main content

Advertisement

Log in

Imaging studies and APOE genotype in persons at risk for Alzheimer’s disease

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Many studies have investigated APOE-related differences in cerebral structure, blood flow, metabolism, and activation in an attempt to detect early brain changes in subjects at risk for Alzheimer’s disease (AD). Structural magnetic resonance imaging studies have produced conflicting results, with some failing to detect APOE-related differences and others suggesting that ε4 carriers have more pronounced atrophy, particularly at medial temporal structures. All functional imaging studies done during rest in middle-aged and elderly subjects have found decreased cerebral metabolism for ε4 carriers (mostly in areas that usually are affected by AD), and some have reported faster cerebral metabolic reductions over time. Areas with decreased resting cerebral perfusion and metabolism, in addition to other areas with increased perfusion, have been reported in young ε4 carriers. Imaging studies done during the performance of various cognitive tasks in middle-aged and elderly subjects, and a single study in young subjects, have produced mixed results with regionally nonspecific increased, decreased, or nondifferential APOE-related activations depending on the cognitive task used. APOE-related findings in imaging studies of nondemented subjects may be the result of incipient AD pathologic changes or of genetic heterogeneity in brain structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Corder EH, Saunders AM, Strittmatter WJ, et al.: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261:921–923.

    Article  PubMed  CAS  Google Scholar 

  2. Saunders AM, Strittmatter WJ, Schmechel D, et al.: Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993, 43:1467–1472.

    PubMed  CAS  Google Scholar 

  3. Alzheimer’s Disease Collaborative Group: Apolipoprotein E genotype and Alzheimer’s disease. Lancet 1993, 342:737–738.

    Article  Google Scholar 

  4. Corder EH, Saunders AM, Risch NJ, et al.: Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 1994, 7:180–184.

    Article  PubMed  CAS  Google Scholar 

  5. Scarmeas N, Brandt J, Albert M, et al.: Association between the APOE genotype and psychopathologic symptoms in Alzheimer’s disease. Neurology 2002, 58:1182–1188.

    PubMed  CAS  Google Scholar 

  6. Jack Jr CR, Petersen RC, Xu YC, et al.: Hippocampal atrophy and apolipoprotein E genotype are independently associated with Alzheimer’s disease. Ann Neurol 1998, 43:303–310.

    Article  PubMed  Google Scholar 

  7. Killiany RJ, Hyman BT, Gomez-Isla T, et al.: MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 2002, 58:1188–1196.

    PubMed  CAS  Google Scholar 

  8. Moffat SD, Szekely CA, Zonderman AB, et al.: Longitudinal change in hippocampal volume as a function of apolipoprotein E genotype. Neurology 2000, 55:134–136.

    PubMed  CAS  Google Scholar 

  9. Alexander GE, Chen K, Reiman EM, et al.: APOE e4 dose effect on gray matter atrophy in cognitively normal adults. Society for Neuroscience Conference 2003.

  10. Soininen H, Partanen K, Pitkanen A, et al.: Decreased hippocampal volume asymmetry on MRIs in nondemented elderly subjects carrying the apolipoprotein E epsilon 4 allele. Neurology 1995, 45:391–392.

    PubMed  CAS  Google Scholar 

  11. den HeijerT, Oudkerk M, Launer LJ, et al.: Hippocampal, amygdalar, and global brain atrophy in different apolipoprotein E genotypes. Neurology 2002, 59:746–748. The largest structural MRI study (including 1077 nondemented subjects) examining associations between APOE genotype and cerebral atrophy.

    Google Scholar 

  12. Fleisher A, Grundman M, Jack Jr CR, et al.: Sex, apolipoprotein Erepsilon 4 status, and hippocampal volume in mild cognitive impairment. Arch Neurol 2005, 62:953–957.

    Article  PubMed  Google Scholar 

  13. Plassman BL, Welsh-Bohmer KA, Bigler ED, et al.: Apolipoprotein E epsilon 4 allele and hippocampal volume in twins with normal cognition. Neurology 1997, 48:985–989.

    PubMed  CAS  Google Scholar 

  14. Small GW, Mazziotta JC, Collins MT, et al.: Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 1995, 273:942–947.

    Article  PubMed  CAS  Google Scholar 

  15. Small GW, Ercoli LM, Silverman DH, et al.: Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 2000, 97:6037–6042.

    Article  PubMed  CAS  Google Scholar 

  16. Reiman EM, Caselli RJ, Yun LS, et al.: Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 1996, 334:752–758.

    Article  Google Scholar 

  17. Reiman EM, Chen K, Alexander GE, et al.: Correlations between apolipoprotein E epsilon4 gene dose and brainimaging measurements of regional hypometabolism. Proc Natl Acad Sci U S A 2005, 102:8299–8302. A PET study including 160 cognitively normal middle-aged and elderly subjects. It showed that ⇘4 allele dose was correlated with lower cerebral metabolism during rest in brain regions that usually are affected by AD.

    Article  PubMed  CAS  Google Scholar 

  18. de LeonMJ, Convit A, Wolf OT, et al.: Prediction of cognitive decline in normal elderly subjects with 2-[(18)F].uoro-2-deoxy-D-glucose/poitron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A 2001, 98:10966–10971.

    Article  PubMed  Google Scholar 

  19. Reiman EM, Chen K, Alexander GE, et al.: Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci U S A 2004, 101:284–289. This study reported low rates of cerebral metabolism during rest for cognitively healthy ⇘4 carriers aged 20 to 39 years. Therefore, functional brain changes for carriers of a common susceptibility gene for AD can be detected already in young adulthood, several decades before the possible onset of dementia.

    Article  PubMed  CAS  Google Scholar 

  20. Scarmeas N, Habeck CG, Stern Y, Anderson KE: APOE genotype and cerebral blood flow in healthy young individuals. JAMA 2003, 290:1581–1582. The first report showing that APOE-related differences in PETassessed cerebral perfusion exist, even at college age.

    Article  PubMed  CAS  Google Scholar 

  21. Burggren AC, Small GW, Sabb FW, Bookheimer SY: Speci.city of brain activation patterns in people at genetic risk for Alzheimer disease. Am J Geriatr Psychiatry 2002, 10:44–51.

    PubMed  Google Scholar 

  22. Smith CD, Andersen AH, Kryscio RJ, et al.: Altered brain activation in cognitively intact individuals at high risk for Alzheimer’s disease. Neurology 1999, 53:1391–1396.

    PubMed  CAS  Google Scholar 

  23. Smith CD, Andersen AH, Kryscio RJ, et al.: Women at risk for AD show increased parietal activation during a fluency task. Neurology 2002, 58:1197–1202.

    PubMed  CAS  Google Scholar 

  24. Bondi MW, Houston WS, Eyler LT, Brown GG: fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 2005, 64:501–508.

    PubMed  Google Scholar 

  25. Scarmeas N, Habeck C, Anderson KE, et al.: Altered PET Functional Brain Responses in Cognitively Intact Elderly Persons at Risk for Alzheimer Disease (Carriers of the silon4 Allele). Am J Geriatr Psychiatry 2004, 12:596–605. This study reported APOE-related differences in PET activation of 32 nondemented elderly during performance of a nonverbal memory task. The fact that task difficulty was experimentally equated among participants indicated that differences in activation are a result of APOE-related altered memory processing and not of differential effort during task performance.

    PubMed  Google Scholar 

  26. Petrella JR, Lustig C, Bucher LA, et al.: Prefrontal activation patterns in subjects at risk for Alzheimer disease. Am J Geriatr Psychiatry 2002, 10:112–113.

    PubMed  Google Scholar 

  27. Bookheimer SY, Strojwas MH, Cohen MS, et al.: Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 2000, 343:450–456. One of the earliest fMRI studies examining associations between APOE status and brain activation. Increased magnitude and extend of fMRI activation was noted for ⇘4 carriers during performance of a memory task, which was interpreted as evidence of compensation.

    Article  PubMed  CAS  Google Scholar 

  28. Dickerson BC, Salat DH, Greve DN, et al.: Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005, 65:404–411.

    Article  PubMed  CAS  Google Scholar 

  29. Scarmeas N, Habeck CG, Hilton J, et al.: APOE related alterations in cerebral activation even at college age. J Neurol Neurosurg Psychiatry 2005, 76:1440–1444. This is the only study that has examined differences in cerebral activation for cognitively healthy young subjects of different APOE genotypes. With use of PET during performance of a nonverbal memory task, the authors reported signi.cant APOE-related differences in brain activation, even at college age.

    Article  PubMed  CAS  Google Scholar 

  30. Lehtovirta M, Laakso MP, Soininen H, et al.: Volumes of hippocampus, amygdala and frontal lobe in Alzheimer patients with different apolipoprotein E genotypes. Neuroscience 1995, 67:65–72.

    Article  PubMed  CAS  Google Scholar 

  31. Drzezga A, Riemenschneider M, Strassner B, et al.: Cerebral glucose metabolism in patients with AD and different APOE genotypes. Neurology 2005, 64:102–107.

    PubMed  CAS  Google Scholar 

  32. Corder EH, Jelic V, Basun H, et al.: No difference in cerebral glucose metabolism in patients with Alzheimer disease and differing apolipoprotein E genotypes. Arch Neurol 1997, 54:273–277.

    PubMed  CAS  Google Scholar 

  33. Scarmeas N, Anderson KE, Hilton J, et al.: APOE-dependent PET patterns of brain activation in Alzheimer disease. Neurology 2004, 63:913–915.

    PubMed  CAS  Google Scholar 

  34. Rose A, Addington A, Clasen LS, et al.: The relationship between apolipoprotein E, cognition, and hippocampal development in healthy pediatric subjects. Society for Neuroscience Conference. New Orleans, LA; November 8–12, 2003.

  35. Reiman EM, Caselli RJ, Chen K, et al.: Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proc Natl Acad Sci U S A 2001, 98:3334–3339.

    Article  PubMed  CAS  Google Scholar 

  36. Rypma B, Prabhakaran V, Desmond JE, et al.: Load-dependent roles of frontal brain regions in the maintenance of working memory. Neuroimage 1999, 9:216–226.

    Article  PubMed  CAS  Google Scholar 

  37. Grady CL, Horwitz B, Pietrini P, et al.: The effect of task difficulty on cerebral blood flow during perceptual matching of faces. Hum Brain Mapp 1996, 4:227–239.

    Article  Google Scholar 

  38. Srinivasan SR, Ehnholm C, Elkasabany A, Berenson GS: Apolipoprotein E polymorphism modulates the association between obesity and dyslipidemias during young adulthood: The Bogalusa Heart Study. Metabolism 2001, 50:696–702.

    Article  PubMed  CAS  Google Scholar 

  39. Katsuya T, Baba S, Ishikawa K, et al.: Epsilon 4 allele of apolipoprotein E gene associates with lower blood pressure in young Japanese subjects: the Suita Study. J Hypertens 2002, 20:2017–2021.

    Article  PubMed  CAS  Google Scholar 

  40. Hixson JE: Apolipoprotein E polymorphisms affect atherosclerosis in young males. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb 1991, 11:1237–1244.

    PubMed  CAS  Google Scholar 

  41. van Bockxmeer FM, Mamotte CD: Apolipoprotein epsilon 4 homozygosity in young men with coronary heart disease. Lancet 1992, 340:879–880.

    Article  PubMed  Google Scholar 

  42. Brscic E, Bergerone S, Gagnor A, et al.: Acute myocardial infarction in young adults: prognostic role of angiotensin-converting enzyme, angiotensin II type I receptor, apolipoprotein E, endothelial constitutive nitric oxide synthase, and glycoprotein IIIa genetic polymorphisms at medium-term follow-up. Am Heart J 2000, 139:979–984.

    Article  PubMed  CAS  Google Scholar 

  43. Ferguson SC, Deary IJ, Evans JC, et al.: Apolipoprotein-e in.uences aspects of intellectual ability in type 1 diabetes. Diabetes 2003, 52:145–148.

    Article  PubMed  CAS  Google Scholar 

  44. Rask-Nissila L, Jokinen E, Viikari J, et al.: Impact of dietary intervention, sex, and apolipoprotein E phenotype on tracking of serum lipids and apolipoproteins in 1-to 5-year-old children: the Special Turku Coronary Risk Factor Intervention Project (STRIP). Arterioscler Thromb Vasc Biol 2002, 22:492–498.

    Article  PubMed  CAS  Google Scholar 

  45. Tammi A, Ronnemaa T, Rask-Nissila L, et al.: Apolipoprotein E phenotype regulates cholesterol absorption in healthy 13-month-old children--The STRIP Study. Pediatr Res 2001, 50:688–691.

    Article  PubMed  CAS  Google Scholar 

  46. Zhou Y, Elkins PD, Howell LA, et al.: Apolipoprotein-E de.ciency results in an altered stress responsiveness in addition to an impaired spatial memory in young mice. Brain Res 1998, 788:151–159.

    Article  PubMed  CAS  Google Scholar 

  47. Valastro B, Ghribi O, Poirier J, et al.: AMPA receptor regulation and LTP in the hippocampus of young and aged apolipoprotein E-de.cient mice. Neurobiol Aging 2001, 22:9–15.

    Article  PubMed  CAS  Google Scholar 

  48. Selkoe DJ: Alzheimer’s disease is a synaptic failure. Science 2002, 298:789–791.

    Article  PubMed  CAS  Google Scholar 

  49. Richey PL, Siedlak SL, Smith MA, Perry G: Apolipoprotein E interaction with the neuro.brillary tangles and senile plaques in Alzheimer disease: implications for disease pathogenesis. Biochem Biophys Res Commun 1995, 208:657–663.

    Article  PubMed  CAS  Google Scholar 

  50. Polvikoski T, Sulkava R, Haltia M, et al.: Apolipoprotein E, dementia, and cortical deposition of beta-amyloid protein. N Engl J Med 1995, 333:1242–1247.

    Article  PubMed  CAS  Google Scholar 

  51. Morishima-Kawashima M, Oshima N, Ogata H, et al.: Effect of apolipoprotein E allele epsilon4 on the initial phase of amyloid beta-protein accumulation in the human brain. Am J Pathol 2000, 157:2093–2099.

    PubMed  CAS  Google Scholar 

  52. Ghebremedhin E, Schultz C, Braak E, Braak H: High frequency of apolipoprotein E epsilon4 allele in young individuals with very mild Alzheimer’s disease-related neuro.brillary changes. Exp Neurol 1998, 153:152–155.

    Article  PubMed  CAS  Google Scholar 

  53. Lehtovirta M, Laakso MP, Soininen H, et al.: Volumes of hippocampus, amygdala and frontal lobe in Alzheimer patients with different apolipoprotein E genotypes. Neuroscience 1995, 67:65–72.

    Article  PubMed  CAS  Google Scholar 

  54. Lehtovirta M, Soininen H, Helisalmi S, et al.: Clinical and neuropsychological characteristics in familial and sporadic Alzheimer’s disease: relation to apolipoprotein E polymorphism. Neurology 1996, 46:413–419.

    Google Scholar 

  55. Rypma B, D’Esposito M: Age-related changes in brainbehaviour relationships: evidence from event-related functional MRI studies. Eur J Cogn Psychol 2001, 13:235–256.

    Google Scholar 

  56. Madden DJ, Turkington TG, Provenzale JM, et al.: Adult age differences in the functional neuroanatomy of verbal recognition memory. Hum Brain Mapp 1999, 7:115–135.

    Article  PubMed  CAS  Google Scholar 

  57. Logan JM, Sanders AL, Snyder AZ, et al.: Under-recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron 2002, 33:827–840.

    Article  PubMed  CAS  Google Scholar 

  58. Becker JT, Mintun MA, Aleva K, et al.: Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer’s disease. Neurology 1996, 46:692–700.

    Google Scholar 

  59. Meyer MR, Tschanz JT, Norton MC, et al.: APOE genotype predicts when—not whether—one is predisposed to develop Alzheimer’s disease. Nat Genet 1998, 19:321–322.

    Article  PubMed  CAS  Google Scholar 

  60. Teter B, Xu PT, Gilbert JR, et al.: Human apolipoprotein E isoform-speci.c differences in neuronal sprouting in organotypic hippocampal culture. J Neurochem 1999, 73:2613–2616.

    Article  PubMed  CAS  Google Scholar 

  61. Buttini M, Orth M, Bellosta S, et al.: Expression of human apolipoprotein E3 or E4 in the brains of Apoe-/-mice: isoform-speci.c effects on neurodegeneration. J Neurosci 1999, 19:4867–4880.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Scarmeas MD, MSc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarmeas, N., Stern, Y. Imaging studies and APOE genotype in persons at risk for Alzheimer’s disease. Curr Psychiatry Rep 8, 11–17 (2006). https://doi.org/10.1007/s11920-006-0076-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-006-0076-1

Keywords

Navigation