Skip to main content
Log in

Central Mechanisms of HPA Axis Regulation by Voluntary Exercise

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Stress exerts complex effects on the brain and periphery, dependent on the temporal profile and intensity of the stressor. The consequences of a stressful event can also be determined by other characteristics of the stressor, such as whether it is predictable and controllable. While the traditional view has focused primarily on the negative effects of stress on a variety of somatic systems, emerging data support the idea that certain forms of stress can enhance cellular function. Here we review the current literature on the hypothalamic-pituitary-adrenal (HPA) axis regulation by wheel running, a voluntary and controllable stressor with a distinct temporal profile. While running indeed activates a number of systems related to the stress response, other mechanisms exist to reduce the reactivity to this stressor, with possible crosstalk between running and other forms of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adlard, P. A., & Cotman, C. W. (2004). Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression. Neuroscience, 124, 985–992.

    Article  PubMed  CAS  Google Scholar 

  • Amat, J., Baratta, M. V., Paul, E., Bland, S. T., Watkins, L. R., & Maier, S. F. (2005). Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nature Neuroscience, 8, 365–371.

    Article  PubMed  CAS  Google Scholar 

  • Antoniadis, E. A., Ko, C. H., Ralph, M. R., & McDonald, R. J. (2000). Circadian rhythms, aging and memory. Behavioural Brain Research, 114, 221–233.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, D. R., Wilcox, Z. C., & Baylosis, R. C. (1995). Impact of differential housing on humoral immunity following exposure to an acute stressor in rats. Physiology and Behaviour, 57, 649–653.

    Article  CAS  Google Scholar 

  • Bao, A. M., Meynen, G. & Swaab, D. F. (2007). The stress system in depression and neurodegeneration: Focus on the human hypothalamus. Brain Research Reviews. doi:10.1016/j.brainresrev.2007.04.005.

  • Bauer, M. S. (1990). Intensity and precision of circadian wheel running in three outbred rat strains. Physiology and Behaviour, 47, 397–401.

    Article  CAS  Google Scholar 

  • Belke, T. W., & Wagner, J. P. (2005). The reinforcing property and the rewarding aftereffect of wheel running in rats: A combination of two paradigms. Behavioural Processes, 68, 165–172.

    Article  PubMed  Google Scholar 

  • Berchtold, N. C., Kesslak, J. P., Pike, C. J., Adlard, P. A., & Cotman, C. W. (2001). Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. European Journal of Neuroscience, 14, 1992–2002.

    Article  PubMed  CAS  Google Scholar 

  • Bielajew, C., Konkle, A. T., & Merali, Z. (2002). The effects of chronic mild stress on male Sprague-Dawley and Long Evans rats: I. Biochemical and physiological analyses. Behavioural Brain Research, 136, 583–592.

    Article  PubMed  CAS  Google Scholar 

  • Bjornebekk, A., Mathe, A. A., & Brene, S. (2005). The antidepressant effect of running is associated with increased hippocampal cell proliferation. International Journal of Neuropsychopharmacology, 8, 357–368.

    Article  PubMed  CAS  Google Scholar 

  • Burghardt, P. R., Pasumarthi, R. K., Wilson, M. A., & Fadel, J. (2006). Alterations in fear conditioning and amygdalar activation following chronic wheel running in rats. Pharmacology, Biochemistry, and Behaviour, 84, 306–312.

    Article  CAS  Google Scholar 

  • Cabib, S., Castellano, C., Patacchioli, F. R., Cigliana, G., Angelucci, L., & Puglisi-Allegra, S. (1996). Opposite strain-dependent effects of post-training corticosterone in a passive avoidance task in mice: Role of dopamine. Brain Research, 729, 110–118.

    Article  PubMed  CAS  Google Scholar 

  • Campisi, J., Leem, T. H., Greenwood, B. N., et al. (2003). Habitual physical activity facilitates stress-induced HSP72 induction in brain, peripheral, and immune tissues. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 284, R520–30.

    PubMed  CAS  Google Scholar 

  • Collier, G., Hirsch, E., Levitsky, D., & Leshner, A. I. (1975). Effort as a dimension of spontaneous activity in rats. Journal of Comparative Physiological Psychology, 88, 89–96.

    Article  CAS  Google Scholar 

  • Dahlqvist, P., Ronnback, A., Risedal, A., et al. (2003). Effects of postischemic environment on transcription factor and serotonin receptor expression after permanent focal cortical ischemia in rats. Neuroscience, 119, 643–652.

    Article  PubMed  CAS  Google Scholar 

  • De Kloet, E. R. (2004). Hormones and the stressed brain. Annals of the New York Academy of Sciences, 1018, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Dronjak, S., Gavrilovic, L., Filipovic, D., & Radojcic, M. B. (2004). Immobilization and cold stress affect sympatho-adrenomedullary system and pituitary-adrenocortical axis of rats exposed to long-term isolation and crowding. Physiology and Behavior, 81, 409–415.

    Article  PubMed  CAS  Google Scholar 

  • Droste, S. K., Chandramohan, Y., Hill, L. E., Linthorst, A. C., & Reul, J. M. (2007). Voluntary exercise impacts on the rat hypothalamic-pituitary-adrenocortical axis mainly at the adrenal level. Neuroendocrinology, 86, 26–37.

    Article  PubMed  CAS  Google Scholar 

  • Droste, S. K., Gesing, A., Ulbricht, S., Muller, M. B., Linthorst, A. C., & Reul, J. M. (2003). Effects of long-term voluntary exercise on the mouse hypothalamic-pituitary-adrenocortical axis. Endocrinology, 144, 3012–3023.

    Article  PubMed  CAS  Google Scholar 

  • Droste, S. K., Schweizer, M. C., Ulbricht, S., & Reul, J. M. (2006). Long-term voluntary exercise and the mouse hypothalamic-pituitary-adrenocortical axis: Impact of concurrent treatment with the antidepressant drug tianeptine. Journal of Neuroendocrinology, 18, 915–925.

    Article  PubMed  CAS  Google Scholar 

  • Eadie, B. D., Redila, V. A., & Christie, B. R. (2005). Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. Journal of Comparative Neurology, 486, 39–47.

    Article  PubMed  Google Scholar 

  • Fediuc, S., Campbell, J. E., & Riddell, M. C. (2006). Effect of voluntary wheel running on circadian corticosterone release and on HPA axis responsiveness to restraint stress in Sprague-Dawley rats. Journal of Applied Physiology, 100, 1867–1875.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, S. A., & Cada, A. M. (2003). A longitudinal study of short- and long-term activity levels in male and female spontaneously hypertensive, Wistar-Kyoto, and Sprague-Dawley rats. Behavoral Neuroscience, 117, 271–282.

    Article  Google Scholar 

  • Freeman, D. A., & Zucker, I. (2000). Temperature-independence of circannual variations in circadian rhythms of golden-mantled ground squirrels. Journal of Biological Rhythms, 15, 336–343.

    Article  PubMed  CAS  Google Scholar 

  • Girard, I., & Garland, T., Jr. (2002). Plasma corticosterone response to acute and chronic voluntary exercise in female house mice. Journal of Applied Physiology, 92, 1553–1561.

    PubMed  CAS  Google Scholar 

  • Herman, J. P., Ostrander, M. M., Mueller, N. K., & Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Progress in Neuropsychopharmacology and Biological Psychiatry, 29, 1201–1213.

    Article  CAS  Google Scholar 

  • Iversen, I. H. (1993). Techniques for establishing schedules with wheel running as reinforcement in rats. Journal of Experimental Analaysis of Behavior, 60, 219–238.

    Article  CAS  Google Scholar 

  • Johnson, R. A., & Mitchell, G. S. (2003). Exercise-induced changes in hippocampal brain-derived neurotrophic factor and neurotrophin-3: Effects of rat strain. Brain Research, 983, 108–114.

    Article  PubMed  CAS  Google Scholar 

  • Jones, B. C., Sarrieau, A., Reed, C. L., Azar, M. R., & Mormede, P. (1998). Contribution of sex and genetics to neuroendocrine adaptation to stress in mice. Psychoneuroendocrinology, 23, 505–517.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, G. A., Hudson, R., & Armstrong, S. M. (1994). Circadian wheel running activity rhythms in two strains of domestic rabbit. Physiological Behavior, 55, 385–389.

    Article  CAS  Google Scholar 

  • Kiyokawa, Y., Kikusui, T., Takeuchi, Y., & Mori, Y. (2004). Partner’s stress status influences social buffering effects in rats. Behavioral Neuroscience, 118, 798–804.

    Article  PubMed  Google Scholar 

  • Kopp, C., Ressel, V., Wigger, E., & Tobler, I. (2006). Influence of estrus cycle and ageing on activity patterns in two inbred mouse strains. Behavioural Brain Research, 167, 165–174.

    Article  PubMed  CAS  Google Scholar 

  • Kozorovitskiy, Y., & Gould, E. (2004). Dominance hierarchy influences adult neurogenesis in the dentate gyrus. Journal of Neuroscience, 24, 6755–6759.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, A. F., & Erickson, K. I. (2007). Capitalizing on cortical plasticity: Influence of physical activity on cognition and brain function. Trends in Cognitive Sciences, 11, 342–348.

    Article  PubMed  Google Scholar 

  • Lancel, M., Droste, S. K., Sommer, S., & Reul, J. M. (2003). Influence of regular voluntary exercise on spontaneous and social stress-affected sleep in mice. European Journal of Neuroscience, 17, 2171–2179.

    Article  PubMed  Google Scholar 

  • Leshner, A. I. (1971). The adrenals & the regulatory nature of running wheel activity. Physiology and Behavior, 6, 551–558.

    Article  PubMed  CAS  Google Scholar 

  • Leuner, B., Gould, E., & Shors, T. J. (2006). Is there a link between adult neurogenesis and learning? Hippocampus, 16, 216–224.

    Article  PubMed  Google Scholar 

  • Lightfoot, J. T., Turner, M. J., Daves, M., Vordermark, A., & Kleeberger, S. R. (2004). Genetic influence on daily wheel running activity level. Physiological Genomics, 19, 270–276.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z. W., Song, C., Ravindran, A. V., Merali, Z., & Anisman, H. (1998). Influence of a psychogenic and a neurogenic stressor on several indices of immune functioning in different strains of mice. Brain Behavior and Immunity, 12, 7–22.

    Article  CAS  Google Scholar 

  • Magri, F., Cravello, L., Barili, L., et al. (2006). Stress and dementia: The role of the hypothalamicpituitary-adrenal axis. Aging Clinical and Experimental Research, 18, 167–170.

    PubMed  CAS  Google Scholar 

  • Makatsori, A., Duncko, R., Schwendt, M., Moncek, F., Johansson, B. B., & Jezova, D. (2003). Voluntary wheel running modulates glutamate receptor subunit gene expression and stress hormone release in Lewis rats. Psychoneuroendocrinology, 28, 702–714.

    Article  PubMed  CAS  Google Scholar 

  • Makino, S., Tanaka, Y., Nazarloo, H. P., Noguchi, T., Nishimura, K., & Hashimoto, K. (2005). Expression of type 1 corticotropin-releasing hormone (CRH) receptor mRNA in the hypothalamic paraventricular nucleus following restraint stress in CRH-deficient mice. Brain Research, 1048, 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Malisch, J. L., Saltzman, W., Gomes, F. R., Rezende, E. L., Jeske, D. R., & Garland, T., Jr. (2007). Baseline and stress-induced plasma corticosterone concentrations of mice selectively bred for high voluntary wheel running. Physiological and Biochemical Zoology, 80, 146–156.

    Article  PubMed  CAS  Google Scholar 

  • McMurtry, J. P., & Wexler, B. C. (1981). Hypersensitivity of spontaneously hypertensive rats (SHR) to heat, ether, and immobilization. Endocrinology, 108, 1730–1736.

    PubMed  CAS  Google Scholar 

  • Mirescu, C., Peters, J. D., Noiman, L., & Gould, E. (2006). Sleep deprivation inhibits adult neurogenesis in the hippocampus by elevating glucocorticoids. Proceedings of the National Academy of Sciences of the United States of America, 103, 19170–19175.

    Article  PubMed  CAS  Google Scholar 

  • Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A., & Chattarji, S. (2005). Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proceedings of the National Academy of Sciences of the United States of America, 102, 9371–9376.

    Article  PubMed  CAS  Google Scholar 

  • Molteni, R., Wu, A., Vaynman, S., Ying, Z., Barnard, R. J., & Gomez-Pinilla, F. (2004). Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience, 123, 429–440.

    Article  PubMed  CAS  Google Scholar 

  • Naylor, A. S., Persson, A. I., Eriksson, P. S., Jonsdottir, I. H., & Thorlin, T. (2005). Extended voluntary running inhibits exercise-induced adult hippocampal progenitor proliferation in the spontaneously hypertensive rat. Journal of Neurophysiology, 93, 2406–2414.

    Article  PubMed  Google Scholar 

  • Nonneman, A. J., & Corwin, J. V. (1981). Differential effects of prefrontal cortex ablation in neonatal, juvenile, and young adult rats. Journal of Comparative and Physiological Psychology, 95, 588–602.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, S., Chan, J., Gustafsson, J. A., Korach, K. S., & Pfaff, D. W. (2003). Estrogen increases locomotor activity in mice through estrogen receptor alpha: specificity for the type of activity. Endocrinology, 144, 230–239.

    Article  PubMed  CAS  Google Scholar 

  • Persson, A. I., Naylor, A. S., Jonsdottir, I. H., Nyberg, F., Eriksson, P. S., & Thorlin, T. (2004). Differential regulation of hippocampal progenitor proliferation by opioid receptor antagonists in running and non-running spontaneously hypertensive rats. European Journal of Neuroscience, 19, 1847–1855.

    Article  PubMed  Google Scholar 

  • Redila, V. A., & Christie, B. R. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience, 137, 1299–1307.

    Article  PubMed  CAS  Google Scholar 

  • Reebs, S. G., & Maillet, D. (2003). Effect of cage enrichment on the daily use of running wheels by Syrian hamsters. Chronobiology International, 20, 9–20.

    Article  PubMed  Google Scholar 

  • Refinetti, R. (2007). Absence of circadian and photoperiodic conservation of energy expenditure in three rodent species. Journal of Comparative Physiology [B], 177, 309–318.

    CAS  Google Scholar 

  • Rhodes, J. S., Garland, T., Jr, & Gammie, S. C. (2003). Patterns of brain activity associated with variation in voluntary wheel-running behavior. Behavioral Neuroscience, 117, 1243–1256.

    Article  PubMed  Google Scholar 

  • Rittenhouse, P. A., Lopez-Rubalcava, C., Stanwood, G. D., & Lucki, I. (2002). Amplified behavioral and endocrine responses to forced swim stress in the Wistar-Kyoto rat. Psychoneuroendocrinology, 27, 303–318.

    Article  PubMed  Google Scholar 

  • Roubertoux, P. L., Guillot, P. V., Mortaud, S., et al. (2005). Attack behaviors in mice: From factorial structure to quantitative trait loci mapping. European Journal of Pharmacology, 526, 172–185.

    Article  PubMed  CAS  Google Scholar 

  • Ruis, M. A., te Brake, J. H., Buwalda, B., et al. (1999). Housing familiar male wildtype rats together reduces the long-term adverse behavioural and physiological effects of social defeat. Psychoneuroendocrinology, 24, 285–300.

    Article  PubMed  CAS  Google Scholar 

  • Seligman, M. E., & Beagley, G. (1975). Learned helplessness in the rat. Journal of Comparative and .Physiological Psychology, 88, 534–541.

    Article  PubMed  CAS  Google Scholar 

  • Seyle, H. (1976). The stress of life. NY: McGraw-Hill.

  • Shors, T. J. (1998). Stress and sex effects on associative learning: For better or for worse. Neuroscientist, 4, 353–364.

    Article  Google Scholar 

  • Stranahan, A. M., Khalil, D., & Gould, E. (2006). Social isolation delays the positive effects of running on adult neurogenesis. Nature Neuroscience, 9, 526–533.

    Article  PubMed  CAS  Google Scholar 

  • Stranahan, A. M., Khalil, D. & Gould, E. (2007). Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus, 17(11), 1017–1022.

    Google Scholar 

  • Tousson, E., & Meissl, H. (2004). Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus. Journal of Neuroscience, 24, 2983–2988.

    Article  PubMed  CAS  Google Scholar 

  • Valentinuzzi, V. S., Scarbrough, K., Takahashi, J. S., & Turek, F. W. (1997). Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. American Journal of Physiology, 273, R1957–1964.

    CAS  PubMed  Google Scholar 

  • van Praag, H., Christie, B. R., Sejnowski, T. J., & Gage, F. H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 13427–13431.

    Article  PubMed  Google Scholar 

  • Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience, 20, 2580–2590.

    Article  PubMed  Google Scholar 

  • Viau, V., & Meaney, M. J. (1991). Variations in the hypothalamic-pituitary-adrenal response to stress during the estrous cycle in the rat. Endocrinology, 129, 2503–2511.

    Article  PubMed  CAS  Google Scholar 

  • Wollnik, F., & Turek, F. W. (1988). Estrous correlated modulations of circadian and ultradian wheel-running activity rhythms in LEW/Ztm rats. Physiology and Behavior, 43, 389–396.

    Article  PubMed  CAS  Google Scholar 

  • Wood, G. E., & Shors, T. J. (1998). Stress facilitates classical conditioning in males, but impairs classical conditioning in females through activational effects of ovarian hormones. Proceedings of the National Academy of Sciences of the United States of America, 95, 4066–4071.

    Article  PubMed  CAS  Google Scholar 

  • Woolley, C. S., Gould, E., & McEwen, B. S. (1990). Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Research, 531, 225–231.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, H., Liu, Y., Li, W., et al. (2006). Beneficial effects of exercise and its molecular mechanisms on depression in rats. Behavioural Brain Research, 168, 47–55.

    Article  PubMed  CAS  Google Scholar 

  • Zillmann, D., Katcher, A. H., & Milavshky, B. (1972). Excitation transfer from physical exercise to subsequent aggressive behavior. Journal of Experimental Social Psychology, 8, 247–259

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH NRSA F31 AG024690-03 through Princeton University and by the National Institute on Aging Intramural Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Mattson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stranahan, A.M., Lee, K. & Mattson, M.P. Central Mechanisms of HPA Axis Regulation by Voluntary Exercise. Neuromol Med 10, 118–127 (2008). https://doi.org/10.1007/s12017-008-8027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-008-8027-0

Keywords

Navigation