Skip to main content

Advertisement

Log in

Neurological Benefits of Omega-3 Fatty Acids

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The central nervous system is highly enriched in long-chain polyunsaturated fatty acid (PUFA) of the omega-6 and omega-3 series. The presence of these fatty acids as structural components of neuronal membranes influences cellular function both directly, through effects on membrane properties, and also by acting as a precursor pool for lipid-derived messengers. An adequate intake of omega-3 PUFA is essential for optimal visual function and neural development. Furthermore, there is increasing evidence that increased intake of the long-chain omega-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may confer benefits in a variety of psychiatric and neurological disorders, and in particular neurodegenerative conditions. However, the mechanisms underlying these beneficial effects are still poorly understood. Recent evidence also indicates that in addition to the positive effects seen in chronic neurodegenerative conditions, omega-3 PUFA may also have significant neuroprotective potential in acute neurological injury. Thus, these compounds offer an intriguing prospect as potentially new therapeutic approaches in both chronic and acute conditions. The purpose of this article is to review the current evidence of the neurological benefits of omega-3 PUFA, looking specifically at neurodegenerative conditions and acute neurological injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aid, S., Vancassel, S., Poumes-Ballihaut, C., Chalon, S., Guesnet, P., & Lavialle, M. (2003). Effect of a diet-induced n-3 PUFA depletion on cholinergic parameters in the rat hippocampus. Journal of Lipid Research, 44(8), 1545–1551.

    Article  PubMed  CAS  Google Scholar 

  • Akbar, M., & Kim, H.-Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: Involvement of phosphatidylinositol-3 kinase pathway. Journal of Neurochemistry, 82, 655–665.

    Article  PubMed  CAS  Google Scholar 

  • Anderton, B. H. (2002). Ageing of the brain. Mechanisms of Ageing and Development, 123, 811–817.

    Article  PubMed  CAS  Google Scholar 

  • Arendash, G. W., Jensen, M. T., Salem, N., Jr., Hussein, N., Cracchiolo, J., Dickson, A., et al. (2007). A diet high in omega-3 fatty acids does not improve or protect cognitive performance in Alzheimer’s transgenic mice. Neuroscience, 149, 286–302.

    Article  PubMed  CAS  Google Scholar 

  • Assayag, K., Yakunin, E., Loeb, V., Selkoe, D. J., & Sharon, R. (2007). Polyunsaturated fatty acids induce alpha-synuclein-related pathogenic changes in neuronal cells. American Journal of Pathology, 171(6), 2000–2011.

    Article  PubMed  CAS  Google Scholar 

  • Azbill, R. D., Mu, X., Bruce-Keller, A. J., Mattson, M. P., & Springer, J. E. (1997). Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Research, 765(2), 283–290.

    Article  PubMed  CAS  Google Scholar 

  • Babin, F., Abderrazik, M., Favier, F., Cristol, J. P., Leger, C. L., Papoz, L., et al. (1999). Differences between polyunsaturated fatty acid status of non-institutionalised elderly women and younger controls: A bioconversion defect can be suspected. European Journal of Clinical Nutrition, 53, 591–596.

    Article  PubMed  CAS  Google Scholar 

  • Bai, L., Hof, P. R., Standaert, D. G., Xing, Y., Nelson, S. E., Young, A. B., et al. (2004). Changes in the expression of the NR2B subunit during aging in macaque monkeys. Neurobiology of Aging, 25, 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Barberger-Gateau, P., Letenneur, L., Deschamps, V., Peres, K., Dartigues, J.-F., & Renaud, S. (2002). Fish, meat, and risk of dementia: Cohort study. British Medical Journal, 325, 932–933.

    Article  PubMed  Google Scholar 

  • Barcelo-Coblijn, G., Hogyes, E., Kitajka, K., Puskas, L. G., Zvara, A., Hackler, L., Jr., et al. (2003a). Modification by docosahexaenoic acid of age-induced alterations in gene expression and molecular composition of rat brain phospholipids. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11321–11326.

    Article  PubMed  CAS  Google Scholar 

  • Barcelo-Coblijn, G., Kitajka, K., Puskas, L. G., Hogyes, E., Zvara, A., Hackler, L., Jr., et al. (2003b). Gene expression and molecular composition of phospholipids in rat brain in relation to dietary n-6 to n-3 fatty acid ratio. Biochimica et Biophysica Acta, 1632(1–3), 72–79.

    PubMed  CAS  Google Scholar 

  • Bates, D., Cartlidge, N. E., French, J. M., Jackson, M. J., Nightingale, S., Shaw, D. A., et al. (1989). A double-blind controlled trial of long chain n-3 polyunsaturated fatty acids in the treatment of multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 52, 18–22.

    Article  CAS  Google Scholar 

  • Bazan, N. G., Birkle, D. L., & Reddy, T. S. (1984). Docosahexaenoic acid (22:6, n-3) is metabolized to lipoxygenase reaction products in the retina. Biochemical and Biophysical Research Communications, 125(2), 741–747.

    Article  PubMed  CAS  Google Scholar 

  • Belayev, L., Liu, Y., Zhao, W., Busto, R., & Ginsberg, M. D. (2001). Human albumin therapy of acute ischemic stroke: Marked neuroprotective efficacy at moderate doses and with a broad therapeutic window. Stroke, 32(2), 553–560.

    PubMed  CAS  Google Scholar 

  • Belayev, L., Marcheselli, V. L., Khoutorova, L., Rodriguez de Turco, E. B., Busto, R., Ginsberg, M. D., et al. (2005). Docosahexaenoic acid complexed to albumin elicits high-grade ischemic neuroprotection. Stroke, 36(1), 118–123.

    Article  PubMed  CAS  Google Scholar 

  • Berlett, B. S., & Stadtman, E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. Journal of Biological Chemistry, 272(33), 20313–20316.

    Article  PubMed  CAS  Google Scholar 

  • Beydoun, M. A., Kaufman, J. S., Satia, J. A., Rosamond, W., & Folsom, A. R. (2007). Plasma n-3 fatty acids and the risk of cognitive decline in older adults: The Atherosclerosis Risk in Communities Study. American Journal of Clinical Nutrition, 85, 1103–1111.

    PubMed  CAS  Google Scholar 

  • Blokland, A., Honig, W., Browns, F., & Jolles, J. (1999). Cognition-enhancing properties of subchronic phosphatidylserine (PS) treatment in middle-aged rats: Comparison of bovine cortex PS with egg PS and soybean PS. Nutrition, 15(10), 778–783.

    Article  PubMed  CAS  Google Scholar 

  • Blondeau, N., Widman, C., Lazdunski, M., & Heurteaux, C. (2002). Polyunsaturated fatty acids induce ischemic and epileptic tolerance. Neuroscience, 109(2), 231–241.

    Article  PubMed  CAS  Google Scholar 

  • Bolton-Smith, C., Woodward, M., & Tavendale, R. (1997). Evidence for age-related differences in the fatty acid composition of human adipose tissue, independent of diet. European Journal of Clinical Nutrition, 51, 619–624.

    Article  PubMed  CAS  Google Scholar 

  • Boston, P. F., Bennett, A., Horrobin, D. F., & Bennett, C. N. (2004). Ethyl-EPA in Alzheimer’s disease – A pilot study. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 71(5), 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Bourre, J.-M., Francois, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., et al. (1989). The effects of dietary α-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. Journal of Nutrition, 119, 1880–1892.

    PubMed  CAS  Google Scholar 

  • Bousquet, M., Saint-Pierre, M., Julien, C., Salem, N., Jr., Cicchetti, F., & Calon, F. (2008). Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. The FASEB Journal, 22(4), 1213–1225.

    Article  PubMed  CAS  Google Scholar 

  • Brenna, J. T. (2002). Efficiency of conversion of alpha-linolenic acid to long chain n-3 fatty acids in man. Current Opinion in Clinical Nutrition and Metabolic Care, 5(2), 127–132.

    Article  PubMed  CAS  Google Scholar 

  • Burdge, G. C. (2006). Metabolism of a-linolenic acid in humans. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 75, 161–168.

    Article  PubMed  CAS  Google Scholar 

  • Burdge, G. C., & Wootton, S. A. (2002). Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. British Journal of Nutrition, 88(4), 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, J. R., Stevens, L., Zhang, W., & Peck, L. (2000). Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. American Journal of Clinical Nutrition, 71(1), 327–27.

    Google Scholar 

  • Burr, G. O., & Burr, M. M. (1929). A new deficiency disease produced by the rigid exclusion of fat from the diet. Journal of Biological Chemistry, 82, 345–367.

    CAS  Google Scholar 

  • Burr, G. O., & Burr, M. M. (1930). On the nature and role of the essential fatty acids in nutrition. Journal of Biological Chemistry, 86, 587–621.

    CAS  Google Scholar 

  • Butovich, I. A., Lukyanova, S. M., & Bachmann, C. (2006). Dihydroxydocosahexaenoic acids of the neuroprotectin D family: Synthesis, structure and inhibition of human 5-lipoxygenase. Journal of Lipid Research, 47(11), 2462–2474.

    Article  PubMed  CAS  Google Scholar 

  • Calder, P. C. (2006). n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. American Journal of Clinical Nutrition, 83(6 Suppl), 1505S–1519S.

    PubMed  CAS  Google Scholar 

  • Calon, F., Lim, G. P., Morihara, T., Yang, F., Ubeda, O., Salem, N., Jr., et al. (2005). Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer’s disease. European Journal of Neuroscience, 22(3), 617–626.

    Article  PubMed  Google Scholar 

  • Calon, F., Lim, G. P., Yang, F., Morihara, T., Teter, B., Ubeda, O., et al. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron, 43, 633–645.

    Article  PubMed  CAS  Google Scholar 

  • Calon, F., Tahar, A. H., Blanchet, P. J., Morissette, M., Grondin, R., Goulet, M., et al. (2000). Dopamine-receptor stimulation: Biobehavioral and biochemical consequences. Trends in Neurosciences, 23, S92–S100.

    Article  PubMed  CAS  Google Scholar 

  • Cao, J., Schwichtenberg, K. A., Hanson, N. Q., & Tsai, M. Y. (2006). Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids. Clinical Chemistry, 52(12), 2265–2272.

    Article  PubMed  CAS  Google Scholar 

  • Carver, J. D., Benford, V. J., Han, B., & Cantor, A. B. (2001). The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Research Bulletin, 56(2), 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Cassarino, D. S., & Bennet, J. P., Jr. (1999). An evaluation of the role of mitochondria in neurodegenerative disease: Mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Research Reviews, 29, 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Chalon, S., Delion-Vancassel, S., Belzung, C., Guilloteau, D., Leguisquet, A.-M., Besnard, J.-C., et al. (1998). Dietary fish oil affects monoaminergic neurotransmission and behaviour in rats. Journal of Nutrition, 128, 2512–2519.

    PubMed  CAS  Google Scholar 

  • Chambrier, C., Bastard, J. P., Rieusset, J., Chevillotte, E., Bonnefont-Rousselot, D., Therond, P., et al. (2002). Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor gamma. Obesity Research, 10(6), 518–525.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., Zhang, S. M., Hernán, M. A., Willett, W. C., & Ascherio, A. (2003). Dietary intakes of fat and risk of Parkinson’s disease. American Journal of Epidemiology, 157, 1007–1014.

    Article  PubMed  Google Scholar 

  • Choi-Kwon, S., Park, K. A., Lee, H. J., Park, M. S., Lee, J. H., Jeon, S. E., et al. (2004). Temporal changes in cerebral antioxidant enzyme activities after ischemia and reperfusion in a rat focal brain ischemia model: Effect of dietary fish oil. Brain Research. Developmental Brain Research, 152(1), 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, D. A., Grosshans, D. R., & Browning, M. D. (2002). Aging and surface expression of hippocampal NMDA receptors. Journal of Biological Chemistry, 277(17), 14367–14369.

    Article  PubMed  CAS  Google Scholar 

  • Clifford, J. J., Drago, J., Natoli, A. L., Wong, J. Y. F., Kinsella, A., Waddington, J. L., et al. (2002). Essential fatty acids given from conception prevent topographies of motor deficit in a transgenic model of Huntington’s disease. Neuroscience, 109(1), 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Corrigan, F. M., Horrobin, D. F., Skinner, E. R., Besson, J. A. O., & Cooper, M. B. (1998). Abnormal content of n-6 and n-3 long-chain unsaturated fatty acids in the phosphoglycerides and cholesterol esters of parahippocampal cortex from Alzheimer’s disease patients and its relationship to acetyl CoA content. The International Journal of Biochemistry & Cell Biology, 30(2), 197–207.

    Article  CAS  Google Scholar 

  • Corwin, J., Dean, I., Reginald, L., Bartus, R. T., Rotrosen, J., & Watkins, D. L. (1985). Behavioural effects of phosphatidylserine in the aged Fischer 344 rat: Amelioration of passive avoidance deficits without changes in psychomotor task performance. Neurobiology of Aging, 6(1), 11–15.

    Article  PubMed  CAS  Google Scholar 

  • Cunnane, S. C., Ho, S. Y., Dore-Duffy, P., Ells, K. R., & Horrobin, D. F. (1989). Essential fatty acid and lipid profiles in plasma and erythrocytes in patients with multiple sclerosis. American Journal of Clinical Nutrition, 50, 801–806.

    PubMed  CAS  Google Scholar 

  • de Lau, L. M., Bornebroek, M., Witteman, J. C., Hofman, A., Koudstaal, P. J., & Breteler, M. M. (2005). Dietary fatty acids and the risk of Parkinson disease: The Rotterdam study. Neurology, 64(12), 2040–2045.

    Article  PubMed  CAS  Google Scholar 

  • de Rijk, M. C., Breteler, M. M., Graveland, G. A., Ott, A., Grobbee, D. E., & van der Meche, F. G. (1995). Prevalence of Parkinson’s disease in the elderly: The Rotterdam Study. Neurology, 45, 2143–2146.

    PubMed  Google Scholar 

  • de Rijk, M. C., Rocca, W. A., Anderson, D. W., Melcon, M. O., Breteler, M. M., & Maraganore, D. M. (1997). A population perspective on diagnostic criteria for Parkinson’s disease. Neurology, 48, 1277–1281.

    PubMed  Google Scholar 

  • de Urquiza, A. M., Liu, S., Sjoberg, M., Zetterstrom, R. H., Griffiths, W., Sjovall, J., et al. (2000). Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science, 290(5499), 2140–2144.

    Article  PubMed  Google Scholar 

  • Delion, S., Chalon, S., Guilloteau, D., Besnard, J. C., & Durand, G. (1996). Alpha-Linolenic acid dietary deficiency alters age-related changes of dopaminergic and serotoninergic neurotransmission in the rat frontal cortex. Journal of Neurochemistry, 66(4), 1582–1591.

    PubMed  CAS  Google Scholar 

  • Delion, S., Chalon, S., Herault, J., Guilloteau, D., Besnard, J.-C., & Durand, G. (1994). Chronic dietary α-linolenic acid deficiency alters dopaminergic and serotoninergic neurotransmission in rats. Journal of Nutrition, 124, 2466–2476.

    PubMed  CAS  Google Scholar 

  • Duplus, E., & Forest, C. (2002). Is there a single mechanism for fatty acid regulation of gene transcription? Biochemical Pharmacology, 64, 893–901.

    Article  PubMed  CAS  Google Scholar 

  • Dyall, S. C., Michael, G. J., Whelpton, R., Scott, A. G., & Michael-Titus, A. T. (2007). Dietary enrichment with omega-3 polyunsaturated fatty acids reverses age-related decreases in the GluR2 and NR2B glutamate receptor subunits in rat forebrain. Neurobiology of Aging, 28(3), 424–439.

    Article  PubMed  CAS  Google Scholar 

  • Dyerberg, J. (1993). Epidemiology of n-3 fatty acids and disease. In R. De Caterina, S. Endres, S. D. Kristensen, & E. B. Schmidt (Eds.), n-3 Fatty acids and vascular disease (pp. 3–10). London: Springer-Verlag.

    Google Scholar 

  • Favreliere, S., Stadelmann-Ingrand, S., Huguet, F., De Javel, D., Piriou, A., Tallineau, C., et al. (2000). Age-related changes in ethanolamine glycerophospholipids fatty acid levels in rat frontal cortex and hippocampus. Neurobiology of Aging, 21, 653–660.

    Article  CAS  Google Scholar 

  • Fontani, G., Corradeschi, F., Felici, A., Alfatti, F., Migliorini, S., & Lodi, L. (2005). Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. European Journal of Clinical Investigation, 35(11), 691–699.

    Article  PubMed  CAS  Google Scholar 

  • Foster, T. C., & Kumar, A. (2002). Calcium dysregulation in the aging brain. Neuroscientist, 8(4), 297–301.

    PubMed  CAS  Google Scholar 

  • Franks, N. P., & Honoré, E. (2004). The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends in Pharmacological Sciences, 25(11), 601–608.

    Article  PubMed  CAS  Google Scholar 

  • Freund-Levi, Y., Eriksdotter-Jonhagen, M., Cederholm, T., Basun, H., Faxen-Irving, G., Garlind, A., et al. (2006). Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: A randomized double-blind trial. Archives of Neurology, 63(10), 1402–1408.

    Article  PubMed  Google Scholar 

  • Frohman, E. M., Filippi, M., Stuve, O., Waxman, S. G., Corboy, J., Phillips, J. T., et al. (2005). Characterizing the mechanisms of progression in multiple sclerosis: Evidence and new hypotheses for future directions. Archives in Neurology, 62, 1345–1356.

    Article  CAS  Google Scholar 

  • Gerster, H. (1998). Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? International Journal for Vitamin and Nutrition Research, 68(3), 159–173.

    PubMed  CAS  Google Scholar 

  • Glozman, S., Green, P., & Yavin, E. (1998). Intraamniotic ethyl docosahexaenoate administration protects fetal rat brain from ischemic stress. Journal of Neurochemistry, 70(6), 2484–2491.

    Article  PubMed  CAS  Google Scholar 

  • Green, K. N., Martinez-Coria, H., Khashwji, H., Hall, E. B., Yurko-Mauro, K. A., Ellis, L., et al. (2007). Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. Journal of Neuroscience, 27(16), 4385–4395.

    Article  PubMed  CAS  Google Scholar 

  • Hall, E. D., & Braughler, J. M. (1986). Role of lipid peroxidation in post-traumatic spinal cord degeneration: A review. Central Nervous System Trauma, 3(4), 281–294.

    PubMed  CAS  Google Scholar 

  • Hall, E. D., & Springer, J. E. (2004). Neuroprotection and acute spinal cord injury: A reappraisal. NeuroRX, 1(1), 80–100.

    Article  PubMed  Google Scholar 

  • Hamilton, J., Greiner, R. S., Salem, N., Jr., & Kim, H.-Y. (2000). n-3 Fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids, 35, 863–869.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, M., Hossain, S., Shimada, T., & Shido, O. (2006). Docosahexaenoic acid-induced protective effect against impaired learning in amyloid beta-infused rats is associated with increased synaptosomal membrane fluidity. Clinical and Experimental Pharmacology and Physiology, 33(10), 934–939.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, M., Hossain, S., Shimada, T., Sugioka, K., Yamasaki, H., Fujii, Y., et al. (2002). Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. Journal of Neurochemistry, 81(5), 1084–1091.

    Article  PubMed  CAS  Google Scholar 

  • Hering, H., & Sheng, M. (2001). Denritic spines: Structure, dynamics and regulation. Nature Reviews Neuroscience, 2, 880–888.

    Article  PubMed  CAS  Google Scholar 

  • Heude, B., Ducimetiere, P., & Berr, C. (2003). Cognitive decline and fatty acid composition of erythrocyte membranes – The EVA Study. American Journal of Clinical Nutrition, 77(4), 803–808.

    PubMed  CAS  Google Scholar 

  • Heurteaux, C., Guy, N., Laigle, C., Blondeau, N., Duprat, F., Mazzuca, M., Lang-Lazdunski, L., Widmann, C., Zanzouri, M., Romey, G., Lazdunski, M. (2004). TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO Journal, 23(13), 2684–2695.

    Google Scholar 

  • Hof, P. R., Duan, H., Page, T. L., Einstein, M., Wicinski, B., He, Y., et al. (2002). Age-related changes in GluR2 and NMDAR1 glutamate receptor subunit protein immunoreactivity in corticocortically projecting neurons in macaque and patas monkeys. Brain Research, 928(1–2), 175–186.

    Article  PubMed  CAS  Google Scholar 

  • Hong, S., Gronert, K., Devchand, P. R., Moussignac, R. L., & Serhan, C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. Journal of Biological Chemistry, 278(17), 14677–14687.

    Article  PubMed  CAS  Google Scholar 

  • Hong, M. P., Kim, H. I., Shin, Y. K., Lee, C. S., Park, M., & Song, J. H. (2004). Effects of free fatty acids on sodium currents in rat dorsal root ganglion neurons. Brain Research, 1008(1), 81–91.

    Article  PubMed  CAS  Google Scholar 

  • Horrobin, D. F., & Bennet, C. N. (1999). New gene targets related to schizophrenia and other psychiatric disorders: Enzymes, binding proteins and transport proteins involved in phospholipid and fatty acid metabolism. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 60(3), 141–167.

    Article  PubMed  CAS  Google Scholar 

  • Horrocks, L. A., & Yeo, Y. K. (1999). Health benefits of docosahexaenoic acid (DHA). Pharmacological Research, 40(3), 211–225.

    Article  PubMed  CAS  Google Scholar 

  • Huang, W. L., King, V. R., Curran, O. E., Dyall, S. C., Ward, R. E., Lal, N., et al. (2007). A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain, 130, 3004–3019.

    Article  PubMed  CAS  Google Scholar 

  • Infante, J. P., & Huszagh, V. A. (1998). Analysis of the putative role of 24-carbon polyunsaturated fatty acids in the biosynthesis of docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids. FEBS Letters, 431, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, B., Driscoll, L., & Schall, M. (1997). Life-span dendritic and spine changes in areas 10 and 18 of human cortex: Quantitative Golgi study. Journal of Comparative Neurology, 386, 661–680.

    Article  PubMed  CAS  Google Scholar 

  • Jenner, P. (2001). Parkinson’s disease, pesticides and mitochondrial dysfunction. Trends in Neurosciences, 24, 245–247.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E. J., & Schaefer, E. J. (2006). Potential role of dietary n-3 fatty acids in the prevention of dementia and macular degeneration. American Journal of Clinical Nutrition, 83(6 Suppl), 1494S–1498S.

    PubMed  CAS  Google Scholar 

  • Julien, C., Berthiaume, L., Hadj-Tahar, A., Rajput, A. H., & Bedard, T. (2006). Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochemistry International, 48, 404–414.

    Article  PubMed  CAS  Google Scholar 

  • Jump, D. B. (2002). The biochemistry of n-3 polyunsaturated fatty acids. Journal of Biological Chemistry, 277, 8755–8758.

    Article  PubMed  CAS  Google Scholar 

  • Kalmijn, S., Launer, L. J., Ott, A., Witteman, J. C., Hofman, A., & Breteler, M. M. (1997). Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Annals of Neurology, 42(5), 776–782.

    Article  PubMed  CAS  Google Scholar 

  • Kalmijn, S., van Boxtel, M. P., Ocke, M., Verschuren, W. M., Kromhout, D., & Launer, L. J. (2004). Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology, 62(2), 275–280.

    PubMed  CAS  Google Scholar 

  • Kasai, H., Chung, M. H., Jones, D. S., Inoue, H., Ishikawa, H., Kamiya, H., et al. (1991). 8-Hydroxyguanine, a DNA adduct formed by oxygen radicals: Its implication on oxygen radical-involved mutagenesis/carcinogenesis. Journal of Toxicological Sciences, 16(Suppl 1), 95–105.

    PubMed  CAS  Google Scholar 

  • Kim, H. Y. (2007). Novel metabolism of docosahexaenoic acid in neural cells. Journal of Biological Chemistry, 282(26), 18661–18665.

    Article  PubMed  CAS  Google Scholar 

  • King, V. R., Huang, W. L., Dyall, S. C., Curran, O. E., Priestley, J. V., & Michael-Titus, A. T. (2006). Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. Journal of Neuroscience, 26(17), 4672–4680.

    Article  PubMed  CAS  Google Scholar 

  • Kitajka, K., Puskas, L. G., Zvara, A., Hackle, L., Jr., Barcelo-Cobijn, G., Yeo, Y. K., et al. (2002). The role of n-3 polyunsaturated fatty acids in brain: Modulation of rat brain gene expression by dietary n-3 fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 2619–2624.

    Article  PubMed  CAS  Google Scholar 

  • Kocak, H., Oner, P., & Oztas, B. (2000). Comparison of the activities of Na+, K+-ATPase in brains of rats at different ages. Gerontology, 48, 279–281.

    Google Scholar 

  • Koch, M., Ramsaransing, G. S. M., Fokkema, M. R., Heersema, D. J., & De Keyser, J. (2006). Erythrocyte membrane fatty acids in benign and progressive forms of multiple sclerosis. Journal of the Neurological Sciences, 244, 123–126.

    Article  PubMed  CAS  Google Scholar 

  • Kodas, E., Galineau, L., Bodard, S., Vancassel, S., Guilloteau, D., Besnard, J. C., et al. (2004). Serotoninergic neurotransmission is affected by n-3 polyunsaturated fatty acids in the rat. Journal of Neurochemistry, 89, 695–702.

    Article  PubMed  CAS  Google Scholar 

  • Kotchabhakdi, N., Tipyasang, R., Thangnipon, W., Jutapukdeekun, N., & Jindaduangratn, C. (2003). Effects of different dosages of docosahexanoic acid (DHA) intake on maze-learning ability and densities of dendritic spines in rats, Washington, DC, Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2003. Online. Program No. 941.17

  • Kyle, D. J., Schaefer, E., Patton, G., & Beiser, A. (1999). Low serum docosahexaenoic acid is a significant risk factor for Alzheimer’s dementia. Lipids, 34(Suppl), S245.

    Article  PubMed  CAS  Google Scholar 

  • Lane, M. A., & Bailey, S. J. (2005). Role of retinoid signalling in the adult brain. Progress in Neurobiology, 75, 275–293.

    Article  PubMed  CAS  Google Scholar 

  • Lang-Lazdunski, L., Blondeau, N., Jarretou, G., Lazdunski, M., & Heurteaux, C. (2003). Linolenic acid prevents neuronal cell death and paraplegia after transient spinal cord ischemia in rats. Journal of Vascular Surgery, 38(3), 564–575.

    Article  PubMed  Google Scholar 

  • Lauritzen, I., Blondeau, N., Heurteaux, C., Widman, C., Romey, G., & Lazdunski, M. (2000). Polyunsaturated fatty acids are potent neuroprotectors. EMBO Journal, 19, 1784–1793.

    Article  PubMed  CAS  Google Scholar 

  • Lauterbach, E. C., Cummings, J. L., Duffy, J., Coffey, C. E., Kaufer, D., Lovell, M. M., et al. (1998). Neuropsychiatric correlates and treatment of lenticulostriatal diseases: A review of the literature and overview of research opportunities in Huntington’s, Wilson’s, and Fahr’s diseases. Journal of Neuropsychiatry and Clinical Neurosciences, 10, 249–266.

    PubMed  CAS  Google Scholar 

  • Lengqvist, J., Mata De Urquiza, A., Bergman, A. C., Willson, T. M., Sjovall, J., Perlmann, T., et al. (2004). Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Molecular and Cellular Proteomics, 3(7), 692–703.

    Article  PubMed  CAS  Google Scholar 

  • Lim, G. P., Calon, F., Morihara, T., Yang, F., Teter, B., Ubeda, O., et al. (2005). A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. Journal of Neuroscience, 25(12), 3032–3040.

    Article  PubMed  CAS  Google Scholar 

  • Link, C. D. (1995). Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 92, 9368–9372.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, G. H., Ilincheta de Boschero, M. G., Castagnet, P. I., & Giusto, N. M. (1995). Age-associated changes in the content and fatty acid composition of brain glycerophospholipids. Comparative Biochemistry and Physiology, 112B(2), 331–343.

    CAS  Google Scholar 

  • Lukiw, W. J., Cui, J. G., Marcheselli, V. L., Bodker, M., Botkjaer, A., Gotlinger, K., et al. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. Journal of Clinical Investigation, 115(10), 2774–2783.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M. A. (2004). Long-term potentiation and memory. Physiological Reviews, 84(1), 87–136.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Q.-L., Teter, B., Ubeda, O. J., Morihara, T., Dhoot, D., Nyby, M. D., et al. (2007). Omega-3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer’s Disease (AD): Relevance to AD prevention. Journal of Neuroscience, 27(52), 14299–14307.

    Article  PubMed  CAS  Google Scholar 

  • Magnusson, K. R. (1998). The aging of the NMDA receptor complex. Frontiers in Bioscience, 3, e70–e80.

    PubMed  CAS  Google Scholar 

  • Marcheselli, V. L., Hong, S., Lukiw, W. J., Hua, T. X., Gronert, K., Musto, A., et al. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-informatory gene expression. Journal of Biological Chemistry, 278(44), 43807–43817.

    Article  PubMed  CAS  Google Scholar 

  • Margulies, J. E., Cohen, R. W., Levine, M. S., & Watson, J. B. (1993). Decreased GluR2(B) receptor subunit mRNA expression in cerebellar neurons at risk for degeneration. Developmental Neuroscience, 15(2), 110–120.

    Article  PubMed  CAS  Google Scholar 

  • Markesbery, W. R. (1997). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 23(1), 134–147.

    Article  PubMed  CAS  Google Scholar 

  • Markham, J. A., & Juraska, J. M. (2002). Aging and sex influence the anatomy of the rat anterior cingulate cortex. Neurobiology of Aging, 23, 579–588.

    Article  PubMed  Google Scholar 

  • Marsden, C. D. (1994). Problems with long-term levodopa therapy for Parkinson’s disease. Clinical Neuropharmacology, 17(suppl 2), S32–S44.

    PubMed  Google Scholar 

  • Marteinsdottir, I., Horrobin, D. F., Stenfors, C., Theodorsson, E., & Mathe, A. A. (1998). Changes in dietary fatty acids alter phospholipid fatty acid composition in selected regions of rat brain. Progress in Neuro-psychopharmacology, 22, 1007–1021.

    Article  CAS  Google Scholar 

  • Martin, D. S., Spencer, P., Horrobin, D. F., & Lynch, M. A. (2002). Long-term potentiation in aged rats is restored when the age-related decrease in polyunsaturated fatty acid concentration is reversed. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 67(2–3), 121–130.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, M., Vazquez, E., Garcia-Silva, M. T., Manzanares, J., Bertran, J. M., Castello, F., et al. (2000). Therapeutic effects of docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders. American Journal of Clinical Nutrition, 71(1), 376S–175.

    PubMed  CAS  Google Scholar 

  • McGahon, B. M., Martin, D. S., Horrobin, D. F., & Lynch, M. A. (1999). Age-related changes in synaptic function: Analysis of the effect of dietary supplementation with omega-3 fatty acids. Neuroscience, 94(1), 305–314.

    Article  PubMed  CAS  Google Scholar 

  • McGeer, P. L., Yasojima, K., & McGeer, E. G. (2001). Inflammation in Parkinson’s disease. Advances in Neurology, 86, 83–89.

    PubMed  CAS  Google Scholar 

  • Mesches, M. H., Gemma, C., Veng, L. M., Allgeier, C., Young, D. A., Browning, M. D., et al. (2004). Sulindac improves memory and increases NMDA receptor subunits in aged Fischer 344 rats. Neurobiology of Aging, 25(3), 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Mirnikjoo, B., Brown, S. E., Kim, F. S., Marangell, L. B., Sweatt, D. J., & Weeber, E. J. (2001). Protein kinase inhibition by omega-3 fatty acids. Journal of Biological Chemistry, 276(14), 10888–10896.

    Article  PubMed  CAS  Google Scholar 

  • Mishina, M., Sakimura, K., Mori, H., Kushiya, E., Harabayashi, M., Uchino, S., et al. (1991). A single amino acid residue determines the Ca2+ permeability of AMPA-selective glutamate receptor channels. Biochemical and Biophysical Research Communications, 180(2), 813–821.

    Article  PubMed  CAS  Google Scholar 

  • Morris, M. C., Evans, D. A., Bienias, J. L., Tangney, C. C., Bennett, D. A., Wilson, R. S., et al. (2003). Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Archives of Neurology, 60(7), 940–946.

    Article  PubMed  Google Scholar 

  • Mukherjee, P. K., Marcheselli, V. L., Serhan, C. N., & Bazan, N. G. (2004). Neuroprotectin D1: A docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 101(22), 8491–8496.

    Article  PubMed  CAS  Google Scholar 

  • Murck, H., & Manku, M. (2007). Ethyl-EPA in Huntington disease: Potentially relevant mechanism of action. Brain Research Bulletin, 72(2–3), 159–164.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, M. F., Sramek, J. J., Kurtz, N. M., Carta, A., & Cutler, N. R. (1998). Alzheimer’s Disease: Optimizing the development of the next generation of therapeutic compounds. London: Greenwich Medical Media Ltd.

    Google Scholar 

  • Murray, T. J. (2006). Diagnosis and treatment of multiple sclerosis. British Medical Journal, 332, 525–527.

    Article  PubMed  CAS  Google Scholar 

  • Nadler, J. V., Perry, B. W., & Cotman, C. W. (1978). Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature, 271(5646), 676–677.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, M. T., & Nara, T. Y. (2003). Essential fatty acid synthesis and its regulation in mammals. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68, 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Niu, S. L., Mitchell, D. C., Lim, S. Y., Wen, Z. M., Kim, H. Y., Salem, N., Jr., et al. (2004). Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. Journal of Biological Chemistry, 279(30), 31098–31104.

    Article  PubMed  CAS  Google Scholar 

  • Nordvik, I., Myhr, K.-M., Nyland, H., & Bjerve, K. S. (2000). Effect of dietary advice and n-3 supplementation in newly diagnosed MS patients. Acta Neurologica Scandinavica, 102, 143–149.

    Article  PubMed  CAS  Google Scholar 

  • Offe, K., Dodson, S. E., Shoemaker, J. T., Fritz, J. J., Gearing, M., Levey, A. I., et al. (2006). The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments. Journal of Neuroscience, 26(5), 1596–1603.

    Article  PubMed  CAS  Google Scholar 

  • Pagliusi, S. R., Gerrard, P., Abdallah, M., Talabot, D., & Catsicas, S. (1994). Age-related changes in expression of AMPA-selective glutamate receptor subunits: Is calcium-permeability altered in hippocampal neurons? Neuroscience, 61(3), 429–433.

    Article  PubMed  CAS  Google Scholar 

  • Passafaro, M., Nakagawa, T., Sala, C., & Sheng, M. (2003). Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature, 424(6949), 677–681.

    Article  PubMed  CAS  Google Scholar 

  • Pawlosky, R. J., Hibbeln, J. R., Novotny, J. A., & Salem, N., Jr. (2001). Physiological compartmental analysis of α-linolenic acid metabolism in adult humans. Journal of Lipid Research, 42, 1257–1265.

    PubMed  CAS  Google Scholar 

  • Peet, M. (2002). Essential fatty acids: Theoretical aspects and treatment implications for schizophrenia and depression. Advances in Psychiatric Treatment, 8, 223–229.

    Article  Google Scholar 

  • Peet, M., Murphy, B., Shay, J., & Horrobin, D. F. (1998). Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biological Psychiatry, 43, 315–319.

    Article  PubMed  CAS  Google Scholar 

  • Petroni, A., Bertagnolio, B., La Spada, P., Blasevich, M., Papini, N., Govoni, S., et al. (1998). The β-oxidation of arachidonic acid and the synthesis of docosahexaenoic acid are selectively and consistently altered in skin fibroblasts from three Zellweger patients versus X-adrenoleukodystrophy, Alzheimer and control subjects. Neuroscience Letters, 250, 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Profyris, C., Cheema, S. S., Zang, D., Azari, M. F., Boyle, K., Petratos, S. (2004). Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiology of Disease, 15, 415–436.

    Google Scholar 

  • Prolla, T. A., & Mattson, M. P. (2001). Molecular mechanisms of brain aging and neurodegenerative disorders: Lessons from dietary restriction. Trends in Neurosciences, 24(11), S21–S31.

    Article  PubMed  CAS  Google Scholar 

  • Puri, B. K., Bydder, G. M., Counsell, S. J., Corridan, B. J., Richardson, A. J., Hajnal, J. V., et al. (2003). MRI and neuropsychological improvement in Huntington disease following ethyl-EPA treatment. NeuroReport, 13(1), 123–126.

    Article  Google Scholar 

  • Puri, B. K., Leavitt, B. R., Hayden, M. R., Ross, C. A., Rosenblatt, A., Greenamyre, J. T., et al. (2005). Ethyl-EPA in Huntington disease: A double-blind, randomized, placebo-controlled trial. Neurology India, 65(2), 286–292.

    Article  CAS  Google Scholar 

  • Relton, J. K., Strijbos, P. J. L. M., Cooper, A. L., & Rothwell, N. J. (1993). Dietary N-3 fatty acids inhibit ischaemic and excitotoxic brain damage in the rat. Brain Research Bulletin, 32(3), 223–226.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez de Turco, E. B., Belayev, L., Liu, Y., Busto, R., Parkins, N., Bazan, N. G., et al. (2002). Systemic fatty acid responses to transient focal cerebral ischemia: Influence of neuroprotectant therapy with human albumin. Journal of Neurochemistry, 83(3), 515–524.

    Article  PubMed  CAS  Google Scholar 

  • Rose, D. P., & Connolly, J. M. (1999). Omega-3 fatty acids as cancer chemopreventive agents. Pharmacology and Therapeutics, 83, 217–244.

    Article  PubMed  CAS  Google Scholar 

  • Ross, B., Seguin, J., & Sieswerda, L. (2007). Omega-3 fatty acids as treatments for mental illness: Which disorder and which fatty acid? Lipids in Health and Disease, 6(1), 21.

    Article  PubMed  CAS  Google Scholar 

  • Salvati, S., Natali, F., Attorri, L., Di Benedetto, R., Leonardi, F., Di Biase, A., et al. (2008). Eicosapentaenoic acid stimulates the expression of myelin proteins in rat brain. Journal of Neuroscience Research, 86(4), 776–784.

    Article  PubMed  CAS  Google Scholar 

  • Samadi, P., Gregoire, L., Rouillard, C., Bedard, P. J., Di Paolo, T., & Levesque, D. (2006). Docosahexaenoic acid reduces Levodopa-induced dyskinesias in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine monkeys. Annals of Neurology, 59, 282–288.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, T. A. (2000). Polyunsaturated fatty acids in the food chain in Europe. American Journal of Clinical Nutrition, 71(1), 176S–178S.

    PubMed  CAS  Google Scholar 

  • Schaefer, E., Bongard, V., Beiser, A., Lamon-Fava, S., Robins, S. J., Au, R., et al. (2006). Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: The Framingham Heart Study. Archives in Neurology, 63, 1545–1550.

    Article  Google Scholar 

  • Segovia, G., Porras, A., Del Arco, A., & Mora, F. (2001). Glutamatergic neurotransmission in aging: A critical perspective. Mechanisms of Ageing and Development, 122(1), 1–29.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D. J. (2001). Alzheimer’s disease: Genes, proteins, and therapy. Physiological Reviews, 81, 741–766.

    PubMed  CAS  Google Scholar 

  • Serhan, C. N., Hong, S., Gronert, K., Colgan, S. P., Devchand, P. R., Mirick, G., et al. (2002). Resolvins: A family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. Journal of Experimental Medicine, 196(8), 1025–1037.

    Article  PubMed  CAS  Google Scholar 

  • Serot, J.-M., Christmann, D., Dubost, T., & Couturier, M. (1997). Cerebrospinal fluid transthyretin: Aging and late onset Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 63, 506–508.

    Article  CAS  Google Scholar 

  • Seung Kim, H. F., Weeber, E. J., Sweatt, D. J., Stoll, A. L., & Marangell, L. B. (2001). Inhibitory effects of omega-3 fatty acids on protein kinase C activity. Molecular Psychiatry, 6, 246–248.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, H. (2003). Could n-3 polyunsaturated fatty acids reduce pathological pain by direct actions on the nervous system? Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68, 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Sharon, R., Bar-Joseph, I., Frosch, M. P., Walsh, D. M., Hamilton, J. A., & Selkoe, D. J. (2003). The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron, 37(4), 583–595.

    Article  PubMed  CAS  Google Scholar 

  • Simopoulos, A. P. (1999). Evolutionary aspects of omega-3 fatty acids in the food supply. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 60(5–6), 421–429.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, H. M. (1956). Deficiency of essential fatty acids and atherosclerosis, etcetera. Lancet, i, 381–383.

    Google Scholar 

  • Sinclair, H. M. (1990). History of essential fatty acids. In D. F. Horrobin (Ed.), Omega-6 essential fatty acids. Pathophysiology and roles in clinical medicine (pp. 1–20). New York: Wiley-Liss.

    Google Scholar 

  • Skinner, E. R., Watt, C., Besson, J. A. O., & Best, P. V. (1989). Lipid composition of different regions of the brain in patients with Alzheimer’s disease. Biochemical Society Transactions, 17, 213–214.

    CAS  Google Scholar 

  • Soderberg, M., Edlund, C., Kristensson, K., & Dallner, G. (1991). Fatty acid composition of brain phospholipids in aging and Alzheimer’s disease. Lipids, 26(6), 421–425.

    Article  PubMed  CAS  Google Scholar 

  • Sonntag, W. E., Bennett, S. A., Khan, A. S., Thornton, P. L., Xu, X., Ingram, R. L., et al. (2000). Age and insulin-like growth factor-1 modulate N-methyl-D-aspartate receptor subtype expression in rats. Brain Research Bulletin, 51(4), 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Sprecher, H. (2000). Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochimica et Biophysica Acta, 1486, 219–231.

    PubMed  CAS  Google Scholar 

  • Su, H.-M., Moser, A. B., Moser, H. W., & Watkins, P. A. (2001). Peroxisomal straight-chain acyl CoA oxidase and D-bifunctional protein are essential for the retroconversion step in docosahexaenoic acid synthesis. Journal of Biological Chemistry, 276(41), 38115–38120.

    PubMed  CAS  Google Scholar 

  • Svenningsson, P., Nishi, A., Fisone, G., Girault, J. A., Nairn, A. C., & Greengard, P. (2004). DARPP-32: An integrator of neurotransmission. Annual Review of Pharmacology and Toxicology, 44, 269–296.

    Article  PubMed  CAS  Google Scholar 

  • Swank, R. L., Lerstad, O., Strom, A., & Backer, J. (1952). Multiple sclerosis in rural Norway: Its geographic and occupational incidence in relation to nutrition. New England Journal of Medicine, 246, 721–728.

    CAS  Google Scholar 

  • Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., et al. (1999). Genetic enhancement of learning and memory in mice. Nature, 401(6748), 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Tapiero, H., Nguyen Ba, G., Couvreur, P., & Tew, K. D. (2002). Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomedicine & Pharmacotherapy, 56(5), 215–222.

    Article  CAS  Google Scholar 

  • Thomas, B., & Flint Beal, M. (2007). Parkinson’s disease. Human Molecular Genetics, 16, R183–R194.

    Article  PubMed  CAS  Google Scholar 

  • Tully, A. M., Roche, H. M., Doyle, R., Fallon, C., Bruce, I., Lawlor, B., et al. (2003). Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer’s disease: A case-control study. British Journal of Nutrition, 89(4), 483–489.

    Article  PubMed  CAS  Google Scholar 

  • Vaddadi, K. S., Soosai, E., Chiu, E., & Dingjan, P. (2002). A randomised, placebo-controlled, double blind study of treatment of Huntington’s disease with unsaturated fatty acids. NeuroReport, 13(1), 29–33.

    Article  PubMed  CAS  Google Scholar 

  • van Dellen, A., Welch, J., Dixon, R. M., Cordery, P., York, D., Styles, P., et al. (2000). N-acetylaspartate and DARPP-32 levels decrease in the corpus striatum of Huntington’s disease mice. NeuroReport, 11, 3751–3757.

    Article  PubMed  Google Scholar 

  • van Gelder, B. M., Tijhuis, M., Kalmijn, S., & Kromhout, D. (2007). Fish consumption, n-3 fatty acids, and subsequent 5-y cognitive decline in elderly men: The Zutphen Elderly Study. American Journal of Clinical Nutrition, 85, 1142–1147.

    PubMed  Google Scholar 

  • Van Raamsdonka, J. M., Pearsona, J., Rogersa, D. A., Lua, G., Barakauskasb, V. E., Barrb, A. M., et al. (2005). Ethyl-EPA treatment improves motor dysfunction, but not neurodegeneration in the YAC128 mouse model of Huntington disease. Experimental Neurology, 196, 266–272.

    Article  CAS  Google Scholar 

  • Vancassel, S., Leman, S., Hanonick, L., Denis, S., Roger, J., Nollet, M., et al. (2008). N-3 polyunsaturated fatty acids supplementation reverses stress-induced modifications on brain monoamine levels in mice. Journal of Lipid Research, 49, 340–348.

    Article  PubMed  CAS  Google Scholar 

  • Viani, P., Cervato, G., Fiorilli, A., & Cestaro, B. (1991). Age-related differences in synaptosomal peroxidative damage and membrane properties. Journal of Neurochemistry, 56, 253–258.

    Article  PubMed  CAS  Google Scholar 

  • Voss, A., Reinhart, M., Sankarappa, S., & Sprecher, H. (1991). The metabolism of 7, 10, 13, 16, 19-docosapentaenoic acid to 4, 7, 10, 13, 16, 19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. Journal of Biological Chemistry, 266(30), 19995–20000.

    PubMed  CAS  Google Scholar 

  • Vreugdenhil, M., Bruehl, C., Voskuyl, R. A., Kang, J. X., Leaf, A., & Wadman, W. J. (1996). Polyunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. Proceedings of the National Academy of Sciences of the United States of America, 93(22), 12559–12563.

    Article  PubMed  CAS  Google Scholar 

  • Weinstock-Guttman, B., Baier, M., Park, Y., Feichter, J., Lee-Kwen, P., Gallagher, E., et al. (2005). Lowfat dietary intervention with omega-3 fatty acid supplementation in multiple sclerosis patients. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73, 397–404.

    Article  PubMed  CAS  Google Scholar 

  • Xu, S. J., Chen, Z., Zhu, L. J., Shen, H. Q., & Luo, J. H. (2005a). Visual recognition memory is related to basic expression level of NMDA receptor NR1/NR2B subtype in hippocampus and striatum of rats. Acta Pharmacologica Sinica, 26(2), 177–180.

    Article  PubMed  CAS  Google Scholar 

  • Xu, W., Chi, L., Xu, R., Ke, Y., Luo, C., Cai, J., et al. (2005b). Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury. Spinal Cord, 43(4), 204–213.

    Article  PubMed  CAS  Google Scholar 

  • Yehuda, S., Rabinovtz, S., Carasso, R. L., & Mostofsky, D. I. (1996). Essential fatty acids preparation (SR-3) improves Alzheimer’s patients quality of life. International Journal of Neuroscience, 87(3–4), 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Yehuda, S., Rabinovitz, S., Carasso, R. L., & Mostofsky, D. I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiology of Aging, 23, 843–853.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Perry, G., Smith, M. A., Robertson, D., Olson, S. J., Graham, D. G., et al. (1999). Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. American Journal of Pathology, 154(5), 1423–1429.

    PubMed  CAS  Google Scholar 

  • Zimmer, L., Delpal, S., Guilloteau, D., Aioun, J., Durand, G., & Chalon, S. (2000). Chronic n-3 polyunsaturated fatty acid deficiency alters dopamine vesicle density in the rat frontal cortex. Neuroscience Letters, 284(1–2), 25–28.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer, L., Hembert, S., Durand, G., Breton, P., Guilloteau, D., Besnard, J. C., et al. (1998). Chronic n-3 polyunsaturated fatty acid diet-deficiency acts on dopamine metabolism in the rat frontal cortex: A microdialysis study. Neuroscience Letters, 240(3), 177–181.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Dyall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyall, S.C., Michael-Titus, A.T. Neurological Benefits of Omega-3 Fatty Acids. Neuromol Med 10, 219–235 (2008). https://doi.org/10.1007/s12017-008-8036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-008-8036-z

Keywords

Navigation