Skip to main content

Advertisement

Log in

Cerebrospinal Fluid Profiles of Amyloid β-Related Biomarkers in Alzheimer’s Disease

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The amyloid cascade hypothesis on the pathogenesis of Alzheimer’s disease (AD) states that amyloid β (Aβ) accumulation in the brain is a key factor that initiates the neurodegenerative process. Aβ is generated from amyloid precursor protein (APP) through sequential cleavages by BACE1 (the major β-secretase in the brain) and γ-secretase. The purpose of this study was to characterize APP metabolism in vivo in AD patients versus cognitively healthy subjects by examining alterations in cerebrospinal fluid (CSF) biomarkers. We measured BACE1 activity and concentrations of α- and β-cleaved soluble APP (sAPPα and sAPPβ, respectively) and Aβ40 in CSF, biomarkers that all reflect the metabolism of APP, in 75 AD patients and 65 cognitively healthy controls. These analytes were also applied in a multivariate model to determine whether they provided any added diagnostic value to the core CSF AD biomarkers Aβ42, T-tau, and P-tau. We found no significant differences in BACE1 activity or sAPPα, sAPPβ, and Aβ40 concentrations between AD patients and controls. A multivariate model created with all analytes did not improve the separation of AD patients from controls compared with using the core AD biomarkers alone, highlighting the strong diagnostic performance of Aβ42, T-tau, and P-tau for AD. However, AD patients in advanced clinical stage, as determined by low MMSE score (≤20), had lower BACE1 activity and sAPPα, sAPPβ, and Aβ40 concentrations than patients with higher MMSE score, suggesting that these markers may be related to the severity of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American Psychiatric Association. (1987). Diagnostic and statistical manual of mental disorders: DSM-III-R (3rd ed.). Washington, DC: American Psychiatric Association.

    Google Scholar 

  • Andreasen, N., Hesse, C., Davidsson, P., Minthon, L., Wallin, A., Winblad, B., et al. (1999). Cerebrospinal fluid beta-amyloid(1–42) in Alzheimer disease: Differences between early- and late-onset Alzheimer disease and stability during the course of disease. Archives of Neurology, 56, 673–680.

    Article  PubMed  CAS  Google Scholar 

  • Blennow, K., de Leon, M. J., & Zetterberg, H. (2006). Alzheimer’s disease. Lancet, 368, 387–403. doi:10.1016/S0140-6736(06)69113-7.

    Article  PubMed  CAS  Google Scholar 

  • Blennow, K., Hampel, H., Weiner, M., & Zetterberg, H. (2010). Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nature Reviews Neurology, 6, 131–144.

    Article  PubMed  CAS  Google Scholar 

  • Blennow, K., Wallin, A., Agren, H., Spenger, C., Siegfried, J., & Vanmechelen, E. (1995). Tau protein in cerebrospinal fluid: A biochemical marker for axonal degeneration in Alzheimer disease? Molecular and Chemical Neuropathology, 26, 231–245.

    Article  PubMed  CAS  Google Scholar 

  • Blennow, K., Zetterberg, H., Minthon, L., Lannfelt, L., Strid, S., Annas, P., et al. (2007). Longitudinal stability of CSF biomarkers in Alzheimer’s disease. Neuroscience Letters, 419, 18–22.

    Article  PubMed  CAS  Google Scholar 

  • Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J. K., Holmes, E. A., & Trygg, J. (2006). OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics, 20, 341–351.

    Article  Google Scholar 

  • Cirrito, J. R., Kang, J. E., Lee, J., Stewart, F. R., Verges, D. K., Silverio, L. M., et al. (2008). Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron, 58, 42–51.

    Article  PubMed  CAS  Google Scholar 

  • Fagan, A. M., Shaw, L. M., Xiong, C., Vanderstichele, H., Mintun, M. A., Trojanowski, J. Q., et al. (2011). Comparison of analytical platforms for cerebrospinal fluid measures of beta-amyloid 1–42, total tau, and p-tau181 for identifying Alzheimer disease amyloid plaque pathology. Archives of Neurology, 68, 1137–1144.

    Article  PubMed  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto, H., Cheung, B. S., Hyman, B. T., & Irizarry, M. C. (2002). Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Archives of Neurology, 59, 1381–1389.

    Article  PubMed  Google Scholar 

  • Gisslén, M., Krut, J., Andreasson, U., Blennow, K., Cinque, P., Brew, B. J., et al. (2009). Amyloid and tau cerebrospinal fluid biomarkers in HIV infection. BMC Neurology, 9, 63. doi:10.1186/1471-2377-9-63.

    Article  PubMed  Google Scholar 

  • Höistad, M., Samskog, J., Jacobsen, K. X., Olsson, A., Hansson, H. A., Brodin, E., et al. (2005). Detection of beta-endorphin in the cerebrospinal fluid after intrastriatal microinjection into the rat brain. Brain Research, 1041, 167–180.

    Article  PubMed  Google Scholar 

  • Holsinger, R. M., Lee, J. S., Boyd, A., Masters, C. L., & Collins, S. J. (2006). CSF BACE1 activity is increased in CJD and Alzheimer disease versus [corrected] other dementias. Neurology, 67, 710–712.

    Article  PubMed  CAS  Google Scholar 

  • Holsinger, R. M., McLean, C. A., Beyreuther, K., Masters, C. L., & Evin, G. (2002). Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Annals of Neurology, 51, 783–786.

    Article  PubMed  CAS  Google Scholar 

  • Holsinger, R. M., McLean, C. A., Collins, S. J., Masters, C. L., & Evin, G. (2004). Increased beta-secretase activity in cerebrospinal fluid of Alzheimer’s disease subjects. Annals of Neurology, 55, 898–899.

    Article  PubMed  Google Scholar 

  • Jack, C. R., Jr, Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9, 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, P., Mattsson, N., Hansson, O., Wallin, A., Johansson, J. O., Andreasson, U., et al. (2011). Cerebrospinal fluid biomarkers for Alzheimer’s disease: Diagnostic performance in a homogeneous mono-center population. Journal of Alzheimers Disease, 24, 537–546.

    Google Scholar 

  • Johnston, J. A., Liu, W. W., Todd, S. A., Coulson, D. T., Murphy, S., Irvine, G. B., et al. (2005). Expression and activity of beta-site amyloid precursor protein cleaving enzyme in Alzheimer’s disease. Biochemical Society Transactions, 33, 1096–1100.

    Article  PubMed  CAS  Google Scholar 

  • Lewczuk, P., Kamrowski-Kruck, H., Peters, O., Heuser, I., Jessen, F., Popp, J., et al. (2010). Soluble amyloid precursor proteins in the cerebrospinal fluid as novel potential biomarkers of Alzheimer’s disease: A multicenter study. Molecular Psychiatry, 15, 138–145.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Barger, S. W., Furukawa, K., Bruce, A. J., Wyss-Coray, T., Mark, R. J., et al. (1997). Cellular signaling roles of TGF beta, TNF alpha and beta APP in brain injury responses and Alzheimer’s disease. Brain Research Reviews, 23, 47–61.

    Article  PubMed  CAS  Google Scholar 

  • Mattsson, N., Axelsson, M., Haghighi, S., Malmeström, C., Wu, G., Anckarsäter, R., et al. (2009). Reduced cerebrospinal fluid BACE1 activity in multiple sclerosis. Multiple Sclerosis, 15, 448–454.

    Article  PubMed  CAS  Google Scholar 

  • Mattsson, N., Bremell, D., Anckarsäter, R., Blennow, K., Anckarsäter, H., Zetterberg, H., et al. (2010). Neuroinflammation in Lyme neuroborreliosis affects amyloid metabolism. BMC Neurology, 10, 51. doi:10.1186/1471-2377-10-51.

    Article  PubMed  Google Scholar 

  • Mattsson, N., Zetterberg, H., Bianconi, S., Yanjanin, N. M., Fu, R., Månsson, J. E., et al. (2011). Gamma-secretase-dependent amyloid-beta is increased in Niemann-Pick type C: A cross-sectional study. Neurology, 76, 366–372.

    Article  PubMed  CAS  Google Scholar 

  • May, P. C., Dean, R. A., Lowe, S. L., Martenyi, F., Sheehan, S. M., Boggs, L. N., et al. (2011). Robust central reduction of amyloid-beta in humans with an orally available, non-peptidic beta-secretase inhibitor. Journal of Neuroscience, 31, 16507–16516.

    Article  PubMed  CAS  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology, 34, 939–944.

    PubMed  CAS  Google Scholar 

  • Mungas, D. (1991). In-office mental status testing: A practical guide. Geriatrics, 46, 54–58.

    PubMed  CAS  Google Scholar 

  • Olsson, A., Vanderstichele, H., Andreasen, N., De Meyer, G., Wallin, A., Holmberg, B., et al. (2005). Simultaneous measurement of beta-amyloid(1–42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clinical Chemistry, 51, 336–345.

    Article  PubMed  CAS  Google Scholar 

  • Perneczky, R., Tsolakidou, A., Arnold, A., Diehl-Schmid, J., Grimmer, T., Förstl, H., et al. (2011). CSF soluble amyloid precursor proteins in the diagnosis of incipient Alzheimer disease. Neurology, 77, 35–38.

    Article  PubMed  CAS  Google Scholar 

  • Selnes, P., Blennow, K., Zetterberg, H., Grambaite, R., Rosengren, L., Johnsen, L., et al. (2010). Effects of cerebrovascular disease on amyloid precursor protein metabolites in cerebrospinal fluid. Cerebrospinal Fluid Research, 7, 10. doi:10.1186/1743-8454-7-10.

    Article  PubMed  Google Scholar 

  • Shankar, G. M., & Walsh, D. M. (2009). Alzheimer’s disease: Synaptic dysfunction and Abeta. Molecular Neurodegeneration, 4, 48. doi:10.1186/1750-1326-4-48.

    Article  PubMed  Google Scholar 

  • Shi, X. P., Tugusheva, K., Bruce, J. E., Lucka, A., Chen-Dodson, E., Hu, B., et al. (2005). Novel mutations introduced at the beta-site of amyloid beta protein precursor enhance the production of amyloid beta peptide by BACE1 in vitro and in cells. Journal of Alzheimers Disease, 7, 139–148.

    CAS  Google Scholar 

  • Steinacker, P., Fang, L., Kuhle, J., Petzold, A., Tumani, H., Ludolph, A. C., et al. (2011). Soluble beta-amyloid precursor protein is related to disease progression in amyotrophic lateral sclerosis. PLoS One, 6, e23600. doi:10.1371/journal.pone.0023600.

    Article  PubMed  CAS  Google Scholar 

  • Vanmechelen, E., Vanderstichele, H., Davidsson, P., Van Kerschaver, E., Van Der Perre, B., Sjögren, M., et al. (2000). Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neuroscience Letters, 285, 49–52.

    Article  PubMed  CAS  Google Scholar 

  • Verheijen, J. H., Huisman, L. G., van Lent, N., Neumann, U., Paganetti, P., Hack, C. E., et al. (2006). Detection of a soluble form of BACE-1 in human cerebrospinal fluid by a sensitive activity assay. Clinical Chemistry, 52, 1168–1174.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L. B., Lindholm, K., Yan, R., Citron, M., Xia, W., Yang, X. L., et al. (2003). Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nature Medicine, 9, 3–4.

    Article  PubMed  CAS  Google Scholar 

  • Zetterberg, H., Andreasson, U., Hansson, O., Wu, G., Sankaranarayanan, S., Andersson, M. E., et al. (2008). Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Archives of Neurology, 65, 1102–1107.

    Article  PubMed  Google Scholar 

  • Zhong, Z., Ewers, M., Teipel, S., Bürger, K., Wallin, A., Blennow, K., et al. (2007). Levels of beta-secretase (BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive impairment. Archives of General Psychiatry, 64, 718–726.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Åsa Källén, Monica Christiansson, Sara Hullberg, and Dzemila Secic for excellent technical assistance. This study was supported by grants from the Swedish Research Council, the Söderberg Foundation, Alzheimer’s Association, Swedish Brain Power, Swedish State Support for Clinical Research, the Lundbeck Foundation, Stiftelsen Psykiatriska Forskningsfonden, Stiftelsen Gamla Tjänarinnor, Uppsala Universitets Medicinska Fakultets stiftelse för psykiatrisk och neurologisk forskning, Alzheimerfonden, Hjärnfonden, the Göteborg Medical Society, Thuréus stiftelse, Pfannenstills stiftelse, and Demensfonden.

Conflict of interest

None reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Zetterberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosén, C., Andreasson, U., Mattsson, N. et al. Cerebrospinal Fluid Profiles of Amyloid β-Related Biomarkers in Alzheimer’s Disease. Neuromol Med 14, 65–73 (2012). https://doi.org/10.1007/s12017-012-8171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-012-8171-4

Keywords

Navigation