Skip to main content

Advertisement

Log in

Spinal Cord Injury and the Neuron-Intrinsic Regeneration-Associated Gene Program

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) affects millions of people worldwide and causes a significant physical, emotional, social and economic burden. The main clinical hallmark of SCI is the permanent loss of motor, sensory and autonomic function below the level of injury. In general, neurons of the central nervous system (CNS) are incapable of regeneration, whereas injury to the peripheral nervous system is followed by axonal regeneration and usually results in some degree of functional recovery. The weak neuron-intrinsic regeneration-associated gene (RAG) response upon injury is an important reason for the failure of neurons in the CNS to regenerate an axon. This response consists of the expression of many RAGs, including regeneration-associated transcription factors (TFs). Regeneration-associated TFs are potential key regulators of the RAG program. The function of some regeneration-associated TFs has been studied in transgenic and knock-out mice and by adeno-associated viral vector-mediated overexpression in injured neurons. Here, we review these studies and propose that AAV-mediated gene delivery of combinations of regeneration-associated TFs is a potential strategy to activate the RAG program in injured CNS neurons and achieve long-distance axon regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe, N., & Cavalli, V. (2008). Nerve injury signaling. Current Opinion in Neurobiology, 18, 276–283.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aigner, L., Arber, S., Kapfhammer, J. P., Laux, T., Schneider, C., Botteri, F., et al. (1995). Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell, 83, 269–278.

    CAS  PubMed  Google Scholar 

  • Anderson, P. N., Campbell, G., Zhang, Y., & Lieberman, A. R. (1998). Cellular and molecular correlates of the regeneration of adult mammalian CNS axons into peripheral nerve grafts. Progress in Brain Research, 117, 211–232.

    CAS  PubMed  Google Scholar 

  • Anderson, P. N., & Lieberman, A. R. (1999). Intrinsic determinants of differential axonal regeneration by adult mammalian CNS neurons. In N. R. Saunders & K. M. Dziegielewska (Eds.), Degeneration and regeneration in the nervous system (pp. 53–75). Amsterdam: Harwood Academic Press.

    Google Scholar 

  • Andrews, M. R., Czvitkovich, S., Dassie, E., Vogelaar, C. F., Faissner, A., Blits, B., et al. (2009). Alpha9 integrin promotes neurite outgrowth on tenascin-C and enhances sensory axon regeneration. Journal of Neuroscience, 29, 5546–5557.

    CAS  PubMed  Google Scholar 

  • Bareyre, F. M., Garzorz, N., Lang, C., Misgeld, T., Buning, H., & Kerschensteiner, M. (2011). In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proceedings of the National Academy of Sciences of the USA, 108, 6282–6287.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barritt, A. W., Davies, M., Marchand, F., Hartley, R., Grist, J., Yip, P., et al. (2006). Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. Journal of Neuroscience, 26, 10856–10867.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Becker, D., Sadowsky, C. L., & McDonald, J. W. (2003). Restoring function after spinal cord injury. Neurologist, 9, 1–15.

    PubMed  Google Scholar 

  • Benowitz, L. I., Shashoua, V. E., & Yoon, M. G. (1981). Specific changes in rapidly transported proteins during regeneration of the goldfish optic nerve. Journal of Neuroscience, 1, 300–307.

    CAS  PubMed  Google Scholar 

  • Benson, M. D., Romero, M. I., Lush, M. E., Lu, Q. R., Henkemeyer, M., & Parada, L. F. (2005). Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proceedings of the National Academy of Sciences of the USA, 102, 10694–10699.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ben-Yaakov, K., Dagan, S. Y., Segal-Ruder, Y., Shalem, O., Vuppalanchi, D., Willis, D. E., et al. (2012). Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO Journal, 31, 1350–1363.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berry, M. (1982). Post-injury myelin-breakdown products inhibit axonal growth: An hypothesis to explain the failure of axonal regeneration in the mammalian central nervous system. Bibliotheca Anatomica, 23, 1–11.

  • Blackmore, M. G., Moore, D. L., Smith, R. P., Goldberg, J. L., Bixby, J. L., & Lemmon, V. P. (2010). High content screening of cortical neurons identifies novel regulators of axon growth. Molecular and Cellular Neuroscience, 44, 43–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blackmore, M. G., Wang, Z., Lerch, J. K., Motti, D., Zhang, Y. P., Shields, C. B., et al. (2012). Kruppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract. Proceedings of the National Academy of Sciences, 109, 7517–7522.

    CAS  Google Scholar 

  • Blits, B., Derks, S., Twisk, J., Ehlert, E., Prins, J., & Verhaagen, J. (2010). Adeno-associated viral vector (AAV)-mediated gene transfer in the red nucleus of the adult rat brain: Comparative analysis of the transduction properties of seven AAV serotypes and lentiviral vectors. Journal of Neuroscience Methods, 185, 257–263.

    CAS  PubMed  Google Scholar 

  • Boeshore, K. L., Schreiber, R. C., Vaccariello, S. A., Sachs, H. H., Salazar, R., Lee, J., et al. (2004). Novel changes in gene expression following axotomy of a sympathetic ganglion: A microarray analysis. Journal of Neurobiology, 59, 216–235.

    CAS  PubMed  Google Scholar 

  • Bomze, H. M., Bulsara, K. R., Iskandar, B. J., Caroni, P., & Skene, J. H. (2001). Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nature Neuroscience, 4, 38–43.

    CAS  PubMed  Google Scholar 

  • Bonilla, I. E., Tanabe, K., & Strittmatter, S. M. (2002). Small proline-rich repeat protein 1A is expressed by axotomized neurons and promotes axonal outgrowth. Journal of Neuroscience, 22, 1303–1315.

    CAS  PubMed  Google Scholar 

  • Bracken, M. B. (2012). Steroids for acute spinal cord injury. Cochrane Database System Review, 1, CD001046.

    Google Scholar 

  • Bradbury, E. J., Moon, L. D., Popat, R. J., King, V. R., Bennett, G. S., Patel, P. N., et al. (2002). Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature, 416, 636–640.

    CAS  PubMed  Google Scholar 

  • Broude, E., McAtee, M., Kelley, M. S., & Bregman, B. S. (1997). c-Jun expression in adult rat dorsal root ganglion neurons: Differential response after central or peripheral axotomy. Experimental Neurology, 148, 367–377.

    CAS  PubMed  Google Scholar 

  • Buffo, A., Holtmaat, A. J., Savio, T., Verbeek, J. S., Oberdick, J., Oestreicher, A. B., et al. (1997). Targeted overexpression of the neurite growth-associated protein B-50/GAP-43 in cerebellar Purkinje cells induces sprouting after axotomy but not axon regeneration into growth-permissive transplants. Journal of Neuroscience, 17, 8778–8791.

    CAS  PubMed  Google Scholar 

  • Burger, C., Gorbatyuk, O. S., Velardo, M. J., Peden, C. S., Williams, P., Zolotukhin, S., et al. (2004). Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Molecular Therapy, 10, 302–317.

    CAS  PubMed  Google Scholar 

  • Cafferty, W. B., Yang, S. H., Duffy, P. J., Li, S., & Strittmatter, S. M. (2007). Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. Journal of Neuroscience, 27, 2176–2185.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caggiano, A. O., Zimber, M. P., Ganguly, A., Blight, A. R., & Gruskin, E. A. (2005). Chondroitinase ABCI improves locomotion and bladder function following contusion injury of the rat spinal cord. Journal of Neurotrauma, 22, 226–239.

    PubMed  Google Scholar 

  • Caroni, P., & Schwab, M. E. (1988a). Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron, 1, 85–96.

    CAS  PubMed  Google Scholar 

  • Caroni, P., & Schwab, M. E. (1988b). Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. Journal of Cell Biology, 106, 1281–1288.

    CAS  PubMed  Google Scholar 

  • Chen, M. S., Huber, A. B., van der Haar, M. E., Frank, M., Schnell, L., Spillmann, A. A., et al. (2000). Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature, 403, 434–439.

    CAS  PubMed  Google Scholar 

  • Cho, Y., & Cavalli, V. (2012). HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO Journal, 31, 3063–3078.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho, Y., & Cavalli, V. (2014). HDAC signaling in neuronal development and axon regeneration. Current Opinion in Neurobiology, 27C, 118–126.

    Google Scholar 

  • Cho, Y., Sloutsky, R., Naegle, K. M., & Cavalli, V. (2013). Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell, 155, 894–908.

    CAS  PubMed  Google Scholar 

  • Chong, M. S., Woolf, C. J., Turmaine, M., Emson, P. C., & Anderson, P. N. (1996). Intrinsic versus extrinsic factors in determining the regeneration of the central processes of rat dorsal root ganglion neurons: The influence of a peripheral nerve graft. The Journal of Comparative Neurology, 370, 97–104.

    CAS  PubMed  Google Scholar 

  • Christie, S. D., Comeau, B., Myers, T., Sadi, D., Purdy, M., & Mendez, I. (2008). Duration of lipid peroxidation after acute spinal cord injury in rats and the effect of methylprednisolone. Neurosurgical Focus, 25, E5.

    PubMed  Google Scholar 

  • Costigan, M., Befort, K., Karchewski, L., Griffin, R. S., D’Urso, D., Allchorne, A., et al. (2002). Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neuroscience, 3, 16.

    PubMed Central  PubMed  Google Scholar 

  • David, S., & Aguayo, A. J. (1981). Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science, 214, 931–933.

    CAS  PubMed  Google Scholar 

  • Davies, S. J., Goucher, D. R., Doller, C., & Silver, J. (1999). Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. Journal of Neuroscience, 19, 5810–5822.

    CAS  PubMed  Google Scholar 

  • de Heredia, L. L., & Magoulas, C. (2013). Lack of the transcription factor C/EBPdelta impairs the intrinsic capacity of peripheral neurons for regeneration. Experimental Neurology, 239, 148–157.

    Google Scholar 

  • De Winter, F., Oudega, M., Lankhorst, A. J., Hamers, F. P., Blits, B., Ruitenberg, M. J., et al. (2002). Injury-induced class 3 semaphorin expression in the rat spinal cord. Experimental Neurology, 175, 61–75.

    PubMed  Google Scholar 

  • Deumens, R., Koopmans, G. C., & Joosten, E. A. (2005). Regeneration of descending axon tracts after spinal cord injury. Progress in Neurobiology, 77, 57–89.

    CAS  PubMed  Google Scholar 

  • Devivo, M. J. (2012). Epidemiology of traumatic spinal cord injury: Trends and future implications. Spinal Cord, 50, 365–372.

    CAS  PubMed  Google Scholar 

  • Dimar, J. R., Glassman, S. D., Raque, G. H., Zhang, Y. P., Shields, C. B. (1999). The influence of spinal canal narrowing and timing of decompression on neurologic recovery after spinal cord contusion in a rat model. Spine (Phila Pa 1976), 24, 1623–1633.

  • Di Giovanni, S., Faden, A. I., Yakovlev, A., Duke-Cohan, J. S., Finn, T., Thouin, M., et al. (2005). Neuronal plasticity after spinal cord injury: Identification of a gene cluster driving neurite outgrowth. The FASEB Journal, 19, 153–154.

    Google Scholar 

  • Di Giovanni, S., Knights, C. D., Rao, M., Yakovlev, A., Beers, J., Catania, J., et al. (2006). The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO Journal, 25, 4084–4096.

    PubMed Central  PubMed  Google Scholar 

  • Dididze, M., Green, B. A., Dietrich, W. D., Vanni, S., Wang, M. Y., & Levi, A. D. (2013). Systemic hypothermia in acute cervical spinal cord injury: A case-controlled study. Spinal Cord, 51, 395–400.

    CAS  PubMed  Google Scholar 

  • Dietrich, W. D., Levi, A. D., Wang, M., & Green, B. A. (2011). Hypothermic treatment for acute spinal cord injury. Neurotherapeutics, 8, 229–239.

    PubMed Central  PubMed  Google Scholar 

  • Dinc, C., Iplikcioglu, A. C., Atabey, C., Eroglu, A., Topuz, K., Ipcioglu, O., Demirel, D. (2013). Comparison of deferoxamine and methylprednisolone: Protective effect of pharmacological agents on lipid peroxidation in spinal cord injury in rats. Spine (Phila Pa 1976), 38, E1649–E1655.

  • Donsante, A., Miller, D. G., Li, Y., Vogler, C., Brunt, E. M., Russell, D. W., et al. (2007). AAV vector integration sites in mouse hepatocellular carcinoma. Science, 317, 477.

    CAS  PubMed  Google Scholar 

  • Duh, M. S., Shepard, M. J., Wilberger, J. E., & Bracken, M. B. (1994). The effectiveness of surgery on the treatment of acute spinal cord injury and its relation to pharmacological treatment. Neurosurgery, 35, 240–248.

    CAS  PubMed  Google Scholar 

  • Fabes, J., Anderson, P., Brennan, C., & Bolsover, S. (2007). Regeneration-enhancing effects of EphA4 blocking peptide following corticospinal tract injury in adult rat spinal cord. European Journal of Neuroscience, 26, 2496–2505.

    PubMed  Google Scholar 

  • Fawcett, J. W., Schwab, M. E., Montani, L., Brazda, N., & Muller, H. W. (2012). Defeating inhibition of regeneration by scar and myelin components. Handbook of Clinical Neurology, 109, 503–522.

    PubMed  Google Scholar 

  • Fehlings, M. G., Perrin, R. G. (2006). The timing of surgical intervention in the treatment of spinal cord injury: A systematic review of recent clinical evidence. Spine (Phila Pa 1976), 31, S28–S35.

  • Fehlings, M. G., & Sekhon, L. H. (2000). Cellular, ionic and biomolecular mechanisms of the injury process. In C. H. Tator & E. C. Benzel (Eds.), Contemporary management of spinal cord injury: From impact to rehabilitation (pp. 33–50). New York: American Association of Neurological Surgeons.

    Google Scholar 

  • Fernandes, K. J., Fan, D. P., Tsui, B. J., Cassar, S. L., & Tetzlaff, W. (1999). Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: Differential regulation of GAP-43, tubulins, and neurofilament-M. Journal of Comparative Neurology, 414, 495–510.

    CAS  PubMed  Google Scholar 

  • Finelli, M. J., Wong, J. K., & Zou, H. (2013). Epigenetic regulation of sensory axon regeneration after spinal cord injury. Journal of Neuroscience, 33, 19664–19676.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fleming, J., Ginn, S. L., Weinberger, R. P., Trahair, T. N., Smythe, J. A., & Alexander, I. E. (2001). Adeno-associated virus and lentivirus vectors mediate efficient and sustained transduction of cultured mouse and human dorsal root ganglia sensory neurons. Human Gene Therapy, 12, 77–86.

    CAS  PubMed  Google Scholar 

  • Fouad, K., Pearse, D. D., Tetzlaff, W., & Vavrek, R. (2009). Transplantation and repair: Combined cell implantation and chondroitinase delivery prevents deterioration of bladder function in rats with complete spinal cord injury. Spinal Cord, 47, 727–732.

    CAS  PubMed  Google Scholar 

  • Fouad, K., Schnell, L., Bunge, M. B., Schwab, M. E., Liebscher, T., & Pearse, D. D. (2005). Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. Journal of Neuroscience, 25, 1169–1178.

    CAS  PubMed  Google Scholar 

  • Freund, P., Schmidlin, E., Wannier, T., Bloch, J., Mir, A., Schwab, M. E., et al. (2006). Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nature Medicine, 12, 790–792.

    CAS  PubMed  Google Scholar 

  • Freund, P., Schmidlin, E., Wannier, T., Bloch, J., Mir, A., Schwab, M. E., et al. (2009). Anti-Nogo-A antibody treatment promotes recovery of manual dexterity after unilateral cervical lesion in adult primates–re-examination and extension of behavioral data. European Journal of Neuroscience, 29, 983–996.

    PubMed Central  PubMed  Google Scholar 

  • Gao, Y., Deng, K., Hou, J., Bryson, J. B., Barco, A., Nikulina, E., et al. (2004). Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron, 44, 609–621.

    CAS  PubMed  Google Scholar 

  • Garcia-Alias, G., Barkhuysen, S., Buckle, M., & Fawcett, J. W. (2009). Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nature Neuroscience, 12, 1145–1151.

    CAS  PubMed  Google Scholar 

  • Garcia-Alias, G., & Fawcett, J. W. (2012). Training and anti-CSPG combination therapy for spinal cord injury. Experimental Neurology, 235, 26–32.

    CAS  PubMed  Google Scholar 

  • Garcia-Alias, G., Lin, R., Akrimi, S. F., Story, D., Bradbury, E. J., & Fawcett, J. W. (2008). Therapeutic time window for the application of chondroitinase ABC after spinal cord injury. Experimental Neurology, 210, 331–338.

    CAS  PubMed  Google Scholar 

  • Gaub, P., Joshi, Y., Wuttke, A., Naumann, U., Schnichels, S., Heiduschka, P., et al. (2011). The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain, 134, 2134–2148.

    PubMed  Google Scholar 

  • Giger, R. J., Hollis, E. R., & Tuszynski, M. H. (2010). Guidance molecules in axon regeneration. Cold Spring Harbor Perspectives in Biology, 2, a001867.

    PubMed Central  PubMed  Google Scholar 

  • Glatzel, M., Flechsig, E., Navarro, B., Klein, M. A., Paterna, J. C., Bueler, H., et al. (2000). Adenoviral and adeno-associated viral transfer of genes to the peripheral nervous system. Proceedings of the National Academy of Sciences of the USA, 97, 442–447.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldberg, J. L., Klassen, M. P., Hua, Y., & Barres, B. A. (2002). Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science, 296, 1860–1864.

    CAS  PubMed  Google Scholar 

  • Goldberg, J. L., Vargas, M. E., Wang, J. T., Mandemakers, W., Oster, S. F., Sretavan, D. W., et al. (2004). An oligodendrocyte lineage-specific semaphorin, Sema5A, inhibits axon growth by retinal ganglion cells. Journal of Neuroscience, 24, 4989–4999.

    CAS  PubMed  Google Scholar 

  • Goldshmit, Y., Galea, M. P., Wise, G., Bartlett, P. F., & Turnley, A. M. (2004). Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. Journal of Neuroscience, 24, 10064–10073.

    CAS  PubMed  Google Scholar 

  • Goldshmit, Y., Spanevello, M. D., Tajouri, S., Li, L., Rogers, F., Pearse, M., et al. (2011). EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PLoS ONE, 6, e24636.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzenbach, R. R., Zoerner, B., Schnell, L., Weinmann, O., Mir, A. K., & Schwab, M. E. (2012). Delayed anti-nogo-a antibody application after spinal cord injury shows progressive loss of responsiveness. Journal of Neurotrauma, 29, 567–578.

    PubMed  Google Scholar 

  • Goritz, C., Dias, D. O., Tomilin, N., Barbacid, M., Shupliakov, O., & Frisen, J. (2011). A pericyte origin of spinal cord scar tissue. Science, 333, 238–242.

    PubMed  Google Scholar 

  • GrandPre, T., Nakamura, F., Vartanian, T., & Strittmatter, S. M. (2000). Identification of the Nogo inhibitor of axon regeneration as a reticulon protein. Nature, 403, 439–444.

    CAS  PubMed  Google Scholar 

  • Gruener, G., Biller, J. (2008). Spinal cord anatomy, localization, and overview of spinal cord syndromes. Continuum: Lifelong Learning Neurology, 14, 11–35.

  • Hall, E. D., & Braughler, J. M. (1982a). Effects of intravenous methylprednisolone on spinal cord lipid peroxidation and Na + + K +)-ATPase activity. Dose-response analysis during 1st hour after contusion injury in the cat. Journal of Neurosurgery, 57, 247–253.

    CAS  PubMed  Google Scholar 

  • Hall, E. D., & Braughler, J. M. (1982b). Glucocorticoid mechanisms in acute spinal cord injury: A review and therapeutic rationale. Surgical Neurology, 18, 320–327.

    CAS  PubMed  Google Scholar 

  • Harrison, P. T., Dalziel, R. G., Ditchfield, N. A., & Quinn, J. P. (1999). Neuronal-specific and nerve growth factor-inducible expression directed by the preprotachykinin-A promoter delivered by an adeno-associated virus vector. Neuroscience, 94, 997–1003.

    CAS  PubMed  Google Scholar 

  • Harrop, J. S. (2014). Spinal cord injury: Debating the efficacy of methylprednisolone. Neurosurgery, 61(Suppl 1), 30–31.

    PubMed  Google Scholar 

  • Hellstrom, M., Muhling, J., Ehlert, E. M., Verhaagen, J., Pollett, M. A., Hu, Y., et al. (2011). Negative impact of rAAV2 mediated expression of SOCS3 on the regeneration of adult retinal ganglion cell axons. Molecular and Cellular Neuroscience, 46, 507–515.

    CAS  PubMed  Google Scholar 

  • Hermens, W. T., & Verhaagen, J. (1998). Viral vectors, tools for gene transfer in the nervous system. Progress in Neurobiology, 55, 399–432.

    CAS  PubMed  Google Scholar 

  • Holmes, F. E., Mahoney, S., King, V. R., Bacon, A., Kerr, N. C., Pachnis, V., et al. (2000). Targeted disruption of the galanin gene reduces the number of sensory neurons and their regenerative capacity. Proceedings of the National Academy of Sciences of the USA, 97, 11563–11568.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holtmaat, A. J., Dijkhuizen, P. A., Oestreicher, A. B., Romijn, H. J., Van der Lugt, N. M., Berns, A., et al. (1995). Directed expression of the growth-associated protein B-50/GAP-43 to olfactory neurons in transgenic mice results in changes in axon morphology and extraglomerular fiber growth. Journal of Neuroscience, 15, 7953–7965.

    CAS  PubMed  Google Scholar 

  • Holtmaat, A. J., Hermens, W. T., Sonnemans, M. A., Giger, R. J., Van Leeuwen, F. W., Kaplitt, M. G., et al. (1997). Adenoviral vector-mediated expression of B-50/GAP-43 induces alterations in the membrane organization of olfactory axon terminals in vivo. Journal of Neuroscience, 17, 6575–6586.

    CAS  PubMed  Google Scholar 

  • Houle, J. D., Tom, V. J., Mayes, D., Wagoner, G., Phillips, N., & Silver, J. (2006). Combining an autologous peripheral nervous system “bridge” and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. Journal of Neuroscience, 26, 7405–7415.

    CAS  PubMed  Google Scholar 

  • Ikegami, T., Nakamura, M., Yamane, J., Katoh, H., Okada, S., Iwanami, A., et al. (2005). Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth-associated protein-43-positive fibers after rat spinal cord injury. European Journal of Neuroscience, 22, 3036–3046.

    PubMed  Google Scholar 

  • Jankowski, M. P., Cornuet, P. K., McIlwrath, S., Koerber, H. R., & Albers, K. M. (2006). SRY-box containing gene 11 (Sox11) transcription factor is required for neuron survival and neurite growth. Neuroscience, 143, 501–514.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jankowski, M. P., McIlwrath, S. L., Jing, X., Cornuet, P. K., Salerno, K. M., Koerber, H. R., et al. (2009). Sox11 transcription factor modulates peripheral nerve regeneration in adult mice. Brain Research, 1256, 43–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jing, X., Wang, T., Huang, S., Glorioso, J. C., & Albers, K. M. (2012). The transcription factor Sox11 promotes nerve regeneration through activation of the regeneration-associated gene Sprr1a. Experimental neurology, 233, 221–232.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaeppel, C., Beattie, S. G., Fronza, R., van, L. R., Salmon, F., Schmidt, S., Wolf, S., Nowrouzi, A., Glimm, H., von, K. C., Petry, H., Gaudet, D., Schmidt, M. (2013). A largely random AAV integration profile after LPLD gene therapy. Nat Med, 19, 889–891.

  • Kajimura, D., Dragomir, C., Ramirez, F., & Laub, F. (2007). Identification of genes regulated by transcription factor KLF7 in differentiating olfactory sensory neurons. Gene, 388, 34–42.

    CAS  PubMed  Google Scholar 

  • Kaneko, S., Iwanami, A., Nakamura, M., Kishino, A., Kikuchi, K., Shibata, S., et al. (2006). A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nature Medicine, 12, 1380–1389.

    CAS  PubMed  Google Scholar 

  • Kaplitt, M. G., Feigin, A., Tang, C., Fitzsimons, H. L., Mattis, P., Lawlor, P. A, Bland, R. J., Young, D., Strybing, K., Eidelberg, D., During, M. J. (2007). Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: An open label, phase I trial. 2097–2105.

  • Kaplitt, M. G., Leone, P., Samulski, R. J., Xiao, X., Pfaff, D. W., O’Malley, K. L., et al. (1994). Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nature Genetics, 8, 148–154.

    CAS  PubMed  Google Scholar 

  • Karimi-Abdolrezaee, S., Eftekharpour, E., Wang, J., Schut, D., & Fehlings, M. G. (2010). Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. Journal of Neuroscience, 30, 1657–1676.

    CAS  PubMed  Google Scholar 

  • Karimi-Abdolrezaee, S., Schut, D., Wang, J., & Fehlings, M. G. (2012). Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury. PLoS ONE, 7, e37589.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kikuchi, K., Kishino, A., Konishi, O., Kumagai, K., Hosotani, N., Saji, I., et al. (2003). In vitro and in vivo characterization of a novel semaphorin 3A inhibitor, SM-216289 or xanthofulvin. Journal of Biological Chemistry, 278, 42985–42991.

    CAS  PubMed  Google Scholar 

  • Kingsbury, T. J., & Krueger, B. K. (2007). Ca2 + , CREB and kruppel: A novel KLF7-binding element conserved in mouse and human TRKB promoters is required for CREB-dependent transcription. Molecular and Cellular Neuroscience, 35, 447–455.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirik, D., & Bjorklund, A. (2003). Modeling CNS neurodegeneration by overexpression of disease-causing proteins using viral vectors. Trends in Neurosciences, 26, 386–392.

    CAS  PubMed  Google Scholar 

  • Klein, R. L., McNamara, R. K., King, M. A., Lenox, R. H., Muzyczka, N., & Meyer, E. M. (1999). Generation of aberrant sprouting in the adult rat brain by GAP-43 somatic gene transfer. Brain Research, 832, 136–144.

    CAS  PubMed  Google Scholar 

  • Koerber, J. T., Klimczak, R., Jang, J. H., Dalkara, D., Flannery, J. G., & Schaffer, D. V. (2009). Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Molecular Therapy, 17, 2088–2095.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komiya, Y. (1981). Axonal regeneration in bifurcating axons of rat dorsal root ganglion cells. Experimental Neurology, 73, 824–826.

    CAS  PubMed  Google Scholar 

  • Kwon, I., & Schaffer, D. V. (2008). Designer gene delivery vectors: Molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharmaceutical Research, 25, 489–499.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lang, C., Bradley, P. M., Jacobi, A., Kerschensteiner, M., & Bareyre, F. M. (2013). STAT3 promotes corticospinal remodelling and functional recovery after spinal cord injury. EMBO Reports, 14, 931–937.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, J. K., Chow, R., Xie, F., Chow, S. Y., Tolentino, K. E., & Zheng, B. (2010a). Combined genetic attenuation of myelin and semaphorin-mediated growth inhibition is insufficient to promote serotonergic axon regeneration. Journal of Neuroscience, 30, 10899–10904.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, J. K., Geoffroy, C. G., Chan, A. F., Tolentino, K. E., Crawford, M. J., Leal, M. A., et al. (2010b). Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron, 66, 663–670.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lei, L., Laub, F., Lush, M., Romero, M., Zhou, J., Luikart, B., et al. (2005). The zinc finger transcription factor Klf7 is required for TrkA gene expression and development of nociceptive sensory neurons. Genes & Development, 19, 1354–1364.

    CAS  Google Scholar 

  • LeWitt, P. A., et al. (2011). AAV2-GAD gene therapy for advanced Parkinson’s disease: A double-blind, sham-surgery controlled, randomised trial. Lancet Neurology, 10, 309–319.

    CAS  Google Scholar 

  • Liebscher, T., Schnell, L., Schnell, D., Scholl, J., Schneider, R., Gullo, M., et al. (2005). Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann Neurol, 58, 706–719.

    CAS  PubMed  Google Scholar 

  • Lindner, R., Puttagunta, R., & Di, G. S. (2013). Epigenetic regulation of axon outgrowth and regeneration in CNS injury: The first steps forward. Neurotherapeutics, 10, 771–781.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, K., Lu, Y., Lee, J. K., Samara, R., Willenberg, R., Sears-Kraxberger, I., et al. (2010). PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nature Neuroscience, 13, 1075–1081.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorber, B., Howe, M. L., Benowitz, L. I., & Irwin, N. (2009). Mst3b, an Ste20-like kinase, regulates axon regeneration in mature CNS and PNS pathways. Nature Neuroscience, 12, 1407–1414.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma, W., & Bisby, M. A. (1998). Increased activation of nuclear factor kappa B in rat lumbar dorsal root ganglion neurons following partial sciatic nerve injuries. Brain Research, 797, 243–254.

    CAS  PubMed  Google Scholar 

  • Macgillavry, H. D., Cornelis, J., van der Kallen, L. R., Sassen, M. M., Verhaagen, J., Smit, A. B., et al. (2011). Genome-wide gene expression and promoter binding analysis identifies NFIL3 as a repressor of C/EBP target genes in neuronal outgrowth. Molecular and Cellular Neuroscience, 46, 460–468.

    CAS  PubMed  Google Scholar 

  • Macgillavry, H. D., Stam, F. J., Sassen, M. M., Kegel, L., Hendriks, W. T., Verhaagen, J., et al. (2009). NFIL3 and cAMP response element-binding protein form a transcriptional feed forward loop that controls neuronal regeneration-associated gene expression. Journal of Neuroscience, 29, 15542–15550.

    CAS  PubMed  Google Scholar 

  • Makwana, M., & Raivich, G. (2005). Molecular mechanisms in successful peripheral regeneration. FEBS Journal, 272, 2628–2638.

    CAS  PubMed  Google Scholar 

  • Mason, M. R., Campbell, G., Caroni, P., Anderson, P. N., & Lieberman, A. R. (2000). Overexpression of GAP-43 in thalamic projection neurons of transgenic mice does not enable them to regenerate axons through peripheral nerve grafts. Experimental Neurology, 165, 143–152.

    CAS  PubMed  Google Scholar 

  • Mason, M. R., Ehlert, E. M., Eggers, R., Pool, C. W., Hermening, S., Huseinovic, A., et al. (2010). Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons. Molecular Therapy, 18, 715–724.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mason, M. R., Lieberman, A. R., & Anderson, P. N. (2003). Corticospinal neurons up-regulate a range of growth-associated genes following intracortical, but not spinal, axotomy. European Journal of Neuroscience, 18, 789–802.

    CAS  PubMed  Google Scholar 

  • Mason, M. R., Lieberman, A. R., Grenningloh, G., & Anderson, P. N. (2002). Transcriptional upregulation of SCG10 and CAP-23 is correlated with regeneration of the axons of peripheral and central neurons in vivo. Molecular and Cellular Neuroscience, 20, 595–615.

    CAS  PubMed  Google Scholar 

  • Mason, M. R., Tannemaat, M. R., Malessy, M. J., & Verhaagen, J. (2011). Gene therapy for the peripheral nervous system: A strategy to repair the injured nerve? Current Gene Therapy, 11, 75–89.

    CAS  PubMed  Google Scholar 

  • Massey, J. M., Amps, J., Viapiano, M. S., Matthews, R. T., Wagoner, M. R., Whitaker, C. M., et al. (2008). Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Experimental Neurology, 209, 426–445.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Massey, J. M., Hubscher, C. H., Wagoner, M. R., Decker, J. A., Amps, J., Silver, J., et al. (2006). Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. Journal of Neuroscience, 26, 4406–4414.

    CAS  PubMed  Google Scholar 

  • McDonald, J. W., & Sadowsky, C. (2002). Spinal-cord injury. Lancet, 359, 417–425.

    PubMed  Google Scholar 

  • McFarland, N. R., Lee, J. S., Hyman, B. T., & McLean, P. J. (2009). Comparison of transduction efficiency of recombinant AAV serotypes 1, 2, 5, and 8 in the rat nigrostriatal system. Journal of Neurochemistry, 109, 838–845.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKeon, R. J., Schreiber, R. C., Rudge, J. S., & Silver, J. (1991). Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. Journal of Neuroscience, 11, 3398–3411.

    CAS  PubMed  Google Scholar 

  • McKerracher, L., David, S., Jackson, D. L., Kottis, V., Dunn, R. J., & Braun, P. E. (1994). Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron, 13, 805–811.

    CAS  PubMed  Google Scholar 

  • Mechaly, I., Bourane, S., Piquemal, D., Al-Jumaily, M., Venteo, S., Puech, S., et al. (2006). Gene profiling during development and after a peripheral nerve traumatism reveals genes specifically induced by injury in dorsal root ganglia. Molecular and Cellular Neuroscience, 32, 217–229.

    CAS  PubMed  Google Scholar 

  • Michaelevski, I., Segal-Ruder, Y., Rozenbaum, M., Medzihradszky, K. F., Shalem, O., Coppola, G., Horn-Saban, S., Ben-Yaakov, K., Dagan, S. Y., Rishal, I., Geschwind, D. H., Pilpel, Y., Burlingame, A. L., Fainzilber, M. (2010). Signaling to transcription networks in the neuronal retrograde injury response. Science Signaling, 3, ra53.

  • Moon, L. D., Asher, R. A., Rhodes, K. E., & Fawcett, J. W. (2001). Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nature Neuroscience, 4, 465–466.

    CAS  PubMed  Google Scholar 

  • Moore, D. L., Blackmore, M. G., Hu, Y., Kaestner, K. H., Bixby, J. L., Lemmon, V. P., et al. (2009). KLF family members regulate intrinsic axon regeneration ability. Science, 326, 298–301.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moore, D. L., & Goldberg, J. L. (2011). Multiple transcription factor families regulate axon growth and regeneration. Developmental Neurobiology, 71, 1186–1211.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moreau-Fauvarque, C., Kumanogoh, A., Camand, E., Jaillard, C., Barbin, G., Boquet, I., et al. (2003). The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. Journal of Neuroscience, 23, 9229–9239.

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay, G., Doherty, P., Walsh, F. S., Crocker, P. R., & Filbin, M. T. (1994). A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron, 13, 757–767.

    CAS  PubMed  Google Scholar 

  • Nadeau, S., Hein, P., Fernandes, K. J., Peterson, A. C., & Miller, F. D. (2005). A transcriptional role for C/EBP beta in the neuronal response to axonal injury. Molecular and Cellular Neuroscience, 29, 525–535.

    CAS  PubMed  Google Scholar 

  • New, P. W., Rawicki, H. B., & Bailey, M. J. (2002). Nontraumatic spinal cord injury: Demographic characteristics and complications. Archives of Physical Medicine and Rehabilitation, 83, 996–1001.

    PubMed  Google Scholar 

  • Nguyen, T., Lindner, R., Tedeschi, A., Forsberg, K., Green, A., Wuttke, A., et al. (2009). NFAT-3 is a transcriptional repressor of the growth-associated protein 43 during neuronal maturation. Journal of Biological Chemistry, 284, 18816–18823.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niederost, B. P., Zimmermann, D. R., Schwab, M. E., & Bandtlow, C. E. (1999). Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. Journal of Neuroscience, 19, 8979–8989.

    CAS  PubMed  Google Scholar 

  • Nilsson, A., Moller, K., Dahlin, L., Lundborg, G., & Kanje, M. (2005). Early changes in gene expression in the dorsal root ganglia after transection of the sciatic nerve: Effects of amphiregulin and PAI-1 on regeneration, brain research. Molecular Brain Research, 136, 65–74.

    CAS  PubMed  Google Scholar 

  • NSCISC. (2013). Spinal cord injury facts and figures at a glance. Journal of Spinal Cord Medicine, 36, 1–2.

    Google Scholar 

  • Palfi, S. et al. (2014). Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: A dose escalation, open-label, phase 1/2 trial. Lancet, 383, 1138–1146.

  • Parikh, P., Hao, Y., Hosseinkhani, M., Patil, S. B., Huntley, G. W., Tessier-Lavigne, M., et al. (2011). Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proceedings of the National Academy of Sciences of the USA, 108, E99–107.

    PubMed Central  PubMed  Google Scholar 

  • Park, K. K., Liu, K., Hu, Y., Smith, P. D., Wang, C., Cai, B., et al. (2008). Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science, 322, 963–966.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pasterkamp, R. J., De, W. F., Holtmaat, A. J., & Verhaagen, J. (1998). Evidence for a role of the chemorepellent semaphorin III and its receptor neuropilin-1 in the regeneration of primary olfactory axons. Journal of Neuroscience, 18, 9962–9976.

    CAS  PubMed  Google Scholar 

  • Pasterkamp, R. J., Giger, R. J., Ruitenberg, M. J., Holtmaat, A. J., De, W. J., De, W. F., et al. (1999). Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Molecular and Cellular Neuroscience, 13, 143–166.

    CAS  PubMed  Google Scholar 

  • Pernet, V., & Schwab, M. E. (2012). The role of Nogo-A in axonal plasticity, regrowth and repair. Cell and Tissue Research, 349, 97–104.

    CAS  PubMed  Google Scholar 

  • Perry, R. B., Doron-Mandel, E., Iavnilovitch, E., Rishal, I., Dagan, S. Y., Tsoory, M., et al. (2012). Subcellular knockout of importin beta1 perturbs axonal retrograde signaling. Neuron, 75, 294–305.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pollock, G., Pennypacker, K. R., Memet, S., Israel, A., & Saporta, S. (2005). Activation of NF-kappaB in the mouse spinal cord following sciatic nerve transection. Experimental Brain Research, 165, 470–477.

    CAS  PubMed  Google Scholar 

  • Post, M. W., & van Leeuwen, C. M. (2012). Psychosocial issues in spinal cord injury: A review. Spinal Cord, 50, 382–389.

    CAS  PubMed  Google Scholar 

  • Prinjha, R., Moore, S. E., Vinson, M., Blake, S., Morrow, R., Christie, G., et al. (2000). Inhibitor of neurite outgrowth in humans. Nature, 403, 383–384.

    CAS  PubMed  Google Scholar 

  • Puttagunta, R., Tedeschi, A., Soria, M. G., Hervera, A., Lindner, R., Rathore, K. I., et al. (2014). PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nature Communications, 5, 3527.

    PubMed  Google Scholar 

  • Qiu, J., Cafferty, W. B., McMahon, S. B., & Thompson, S. W. (2005). Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. Journal of Neuroscience, 25, 1645–1653.

    CAS  PubMed  Google Scholar 

  • Quadrato, G., & Di Giovanni, S. (2013). Waking up the sleepers: Shared transcriptional pathways in axonal regeneration and neurogenesis. Cellular and Molecular Life Sciences, 70, 993–1007.

    CAS  PubMed  Google Scholar 

  • Raineteau, O., Fouad, K., Noth, P., Thallmair, M., & Schwab, M. E. (2001). Functional switch between motor tracts in the presence of the mAb IN-1 in the adult rat. Proceedings of the National Academy of Sciences of the USA, 98, 6929–6934.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raivich, G., Bohatschek, M., Da, C. C., Iwata, O., Galiano, M., Hristova, M., et al. (2004). The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron, 43, 57–67.

    CAS  PubMed  Google Scholar 

  • Raivich, G., & Makwana, M. (2007). The making of successful axonal regeneration: Genes, molecules and signal transduction pathways. Brain Research Reviews, 53, 287–311.

    CAS  PubMed  Google Scholar 

  • Richardson, P. M., & Issa, V. M. (1984). Peripheral injury enhances central regeneration of primary sensory neurones. Nature, 309, 791–793.

    CAS  PubMed  Google Scholar 

  • Richardson, P. M., McGuinness, U. M., & Aguayo, A. J. (1982). Peripheral nerve autografts to the rat spinal cord: Studies with axonal tracing methods. Brain Research, 237, 147–162.

    CAS  PubMed  Google Scholar 

  • Richardson, P. M., & Verge, V. M. (1987). Axonal regeneration in dorsal spinal roots is accelerated by peripheral axonal transection. Brain Research, 411, 406–408.

    CAS  PubMed  Google Scholar 

  • Rishal, I., & Fainzilber, M. (2010). Retrograde signaling in axonal regeneration. Experimental Neurology, 223, 5–10.

    CAS  PubMed  Google Scholar 

  • Rossi, F., Gianola, S., & Corvetti, L. (2007). Regulation of intrinsic neuronal properties for axon growth and regeneration. Progress in Neurobiology, 81, 1–28.

    CAS  PubMed  Google Scholar 

  • Rudge, J. S., & Silver, J. (1990). Inhibition of neurite outgrowth on astroglial scars in vitro. Journal of Neuroscience, 10, 3594–3603.

    CAS  PubMed  Google Scholar 

  • Russell, D. W. (2007). AAV vectors, insertional mutagenesis, and cancer. Molecular Therapy, 15, 1740–1743.

    CAS  PubMed  Google Scholar 

  • Saijilafu, H. E., & Zhou, F. Q. (2011). Genetic dissection of axon regeneration via in vivo electroporation of adult mouse sensory neurons. Nature Communications, 2, 543.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sayer, F. T., Kronvall, E., & Nilsson, O. G. (2006). Methylprednisolone treatment in acute spinal cord injury: The myth challenged through a structured analysis of published literature. The Spine Journal, 6, 335–343.

    PubMed  Google Scholar 

  • Schonherr, M. C., Groothoff, J. W., Mulder, G. A., & Eisma, W. H. (1996). Rehabilitation of patients with spinal cord lesions in The Netherlands: An epidemiological study. Spinal Cord, 34, 679–683.

    CAS  PubMed  Google Scholar 

  • Seijffers, R., Allchorne, A. J., & Woolf, C. J. (2006). The transcription factor ATF-3 promotes neurite outgrowth. Molecular and Cellular Neuroscience, 32, 143–154.

    CAS  PubMed  Google Scholar 

  • Seijffers, R., Mills, C. D., & Woolf, C. J. (2007). ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. Journal of Neuroscience, 27, 7911–7920.

    CAS  PubMed  Google Scholar 

  • Simpson, L. A., Eng, J. J., Hsieh, J. T., & Wolfe, D. L. (2012). The health and life priorities of individuals with spinal cord injury: A systematic review. Journal of Neurotrauma, 29, 1548–1555.

    PubMed Central  PubMed  Google Scholar 

  • Skene, J. H. (1989). Axonal growth-associated proteins. Annual Review of Neuroscience, 12, 127–156.

    CAS  PubMed  Google Scholar 

  • Skene, J. H., & Willard, M. (1981). Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems. Journal of Cell Biology, 89, 96–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smaldone, S., Laub, F., Else, C., Dragomir, C., & Ramirez, F. (2004). Identification of MoKA, a novel F-box protein that modulates Kruppel-like transcription factor 7 activity. Molecular and Cellular Biology, 24, 1058–1069.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith, R. P., Lerch-Haner, J. K., Pardinas, J. R., Buchser, W. J., Bixby, J. L., & Lemmon, V. P. (2011). Transcriptional profiling of intrinsic PNS factors in the postnatal mouse. Molecular and Cellular Neuroscience, 46, 32–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith, P. D., Sun, F., Park, K. K., Cai, B., Wang, C., Kuwako, K., et al. (2009). SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron, 64, 617–623.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soderblom, C., Luo, X., Blumenthal, E., Bray, E., Lyapichev, K., Ramos, J., et al. (2013). Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. Journal of Neuroscience, 33, 13882–13887.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sommervaille, T., Reynolds, M. L., & Woolf, C. J. (1991). Time-dependent differences in the increase in GAP-43 expression in dorsal root ganglion cells after peripheral axotomy. Neuroscience, 45, 213–220.

    CAS  PubMed  Google Scholar 

  • Spanevello, M. D., Tajouri, S. I., Mirciov, C., Kurniawan, N., Pearse, M. J., Fabri, L. J., et al. (2013). Acute delivery of EphA4-Fc improves functional recovery after contusive spinal cord injury in rats. Journal of Neurotrauma, 30, 1023–1034.

    PubMed Central  PubMed  Google Scholar 

  • Stam, F. J., Macgillavry, H. D., Armstrong, N. J., de Gunst, M. C., Zhang, Y., Van Kesteren, R. E., et al. (2007). Identification of candidate transcriptional modulators involved in successful regeneration after nerve injury. European Journal of Neuroscience, 25, 3629–3637.

    PubMed  Google Scholar 

  • Stam, F. J., Mason, M. R. J., Smit, A. B., Verhaagen, J. (2008). A meta-analysis of large-scale gene expression studies of the injured PNS: Toward the genetic networks that govern successful regeneration. In: Neural degeneration and repair: Gene expression profiling, proteomics and systems biology (Müller HW, ed), pp 35–59.

  • Storek, B., Harder, N. M., Banck, M. S., Wang, C., McCarty, D. M., Janssen, W. G., et al. (2006). Intrathecal long-term gene expression by self-complementary adeno-associated virus type 1 suitable for chronic pain studies in rats. Molecular Pain, 2, 4.

    PubMed Central  PubMed  Google Scholar 

  • Sun, F., Park, K. K., Belin, S., Wang, D., Lu, T., Chen, G., et al. (2011). Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature, 480, 372–375.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun, H., Xu, J., Della Penna, K. B., Benz, R. J., Kinose, F., Holder, D. J., et al. (2002). Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry. BMC Neuroscience, 3, 11.

    PubMed Central  PubMed  Google Scholar 

  • Tan, C. L., Andrews, M. R., Kwok, J. C., Heintz, T. G., Gumy, L. F., Fassler, R., et al. (2012). Kindlin-1 enhances axon growth on inhibitory chondroitin sulfate proteoglycans and promotes sensory axon regeneration. Journal of Neuroscience, 32, 7325–7335.

    CAS  PubMed  Google Scholar 

  • Tanabe, K., Bonilla, I., Winkles, J. A., & Strittmatter, S. M. (2003). Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth. Journal of Neuroscience, 23, 9675–9686.

    CAS  PubMed  Google Scholar 

  • Tator, C. H. (1996). Experimental and clinical studies of the pathophysiology and management of acute spinal cord injury. Journal of Spinal Cord Medicine, 19, 206–214.

    CAS  PubMed  Google Scholar 

  • Tester, N. J., & Howland, D. R. (2008). Chondroitinase ABC improves basic and skilled locomotion in spinal cord injured cats. Experimental Neurology, 209, 483–496.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tetzlaff, W., Alexander, S. W., Miller, F. D., & Bisby, M. A. (1991). Response of facial and rubrospinal neurons to axotomy: Changes in mRNA expression for cytoskeletal proteins and GAP-43. Journal of Neuroscience, 11, 2528–2544.

    CAS  PubMed  Google Scholar 

  • Thallmair, M., Metz, G. A., Z’Graggen, W. J., Raineteau, O., Kartje, G. L., & Schwab, M. E. (1998). Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nature Neuroscience, 1, 124–131.

    CAS  PubMed  Google Scholar 

  • Tom, V. J., & Houle, J. D. (2008). Intraspinal microinjection of chondroitinase ABC following injury promotes axonal regeneration out of a peripheral nerve graft bridge. Experimental Neurology, 211, 315–319.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Towne, C., & Aebischer, P. (2009). Lentiviral and adeno-associated vector-based therapy for motor neuron disease through RNAi. Methods in Molecular Biology, 555, 87–108.

    CAS  PubMed  Google Scholar 

  • Towne, C., Pertin, M., Beggah, A. T., Aebischer, P., & Decosterd, I. (2009). Recombinant adeno-associated virus serotype 6 (rAAV2/6)-mediated gene transfer to nociceptive neurons through different routes of delivery. Molecular Pain, 5, 52.

    PubMed Central  PubMed  Google Scholar 

  • Trakhtenberg, E. F., & Goldberg, J. L. (2012). Epigenetic regulation of axon and dendrite growth. Frontiers in Molecular Neuroscience, 5, 24.

    CAS  PubMed Central  PubMed  Google Scholar 

  • van den Berg, M. E., Castellote, J. M., Mahillo-Fernandez, I., & de Pedro-Cuesta, J. (2010). Incidence of spinal cord injury worldwide: A systematic review. Neuroepidemiology, 34, 184–192.

    PubMed  Google Scholar 

  • van der Putten, J. J., Stevenson, V. L., Playford, E. D., & Thompson, A. J. (2001). Factors affecting functional outcome in patients with nontraumatic spinal cord lesions after inpatient rehabilitation. Neurorehabil Neural Repair, 15, 99–104.

    PubMed  Google Scholar 

  • Van Kesteren, R. E., Mason, M. R., Macgillavry, H. D., Smit, A. B., & Verhaagen, J. (2011). A gene network perspective on axonal regeneration. Frontiers in Molecular Neuroscience, 4, 46.

    PubMed Central  PubMed  Google Scholar 

  • Varma, A. K., Das, A., Wallace, G., Barry, J., Vertegel, A. A., Ray, S. K., et al. (2013). Spinal cord injury: A review of current therapy, future treatments, and basic science frontiers. Neurochemical Research, 38, 895–905.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verhaagen, J., Van Kesteren, R. E., Bossers, K. A., Macgillavry, H. D., Mason, M. R., & Smit, A. B. (2012). Molecular target discovery for neural repair in the functional genomics era. Handbook of Clinical Neurology, 109, 595–616.

    PubMed  Google Scholar 

  • Wang, D., Ichiyama, R. M., Zhao, R., Andrews, M. R., & Fawcett, J. W. (2011). Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. Journal of Neuroscience, 31, 9332–9344.

    CAS  PubMed  Google Scholar 

  • Wang, K. C., Koprivica, V., Kim, J. A., Sivasankaran, R., Guo, Y., Neve, R. L., et al. (2002). Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature, 417, 941–944.

    CAS  PubMed  Google Scholar 

  • Wang, J. T., Kunzevitzky, N. J., Dugas, J. C., Cameron, M., Barres, B. A., & Goldberg, J. L. (2007). Disease gene candidates revealed by expression profiling of retinal ganglion cell development. Journal of Neuroscience, 27, 8593–8603.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Werner, A., Willem, M., Jones, L. L., Kreutzberg, G. W., Mayer, U., & Raivich, G. (2000). Impaired axonal regeneration in alpha7 integrin-deficient mice. Journal of Neuroscience, 20, 1822–1830.

    CAS  PubMed  Google Scholar 

  • Westphal, M., Yla-Herttuala, S., Martin, J., Warnke, P., Menei, P., Eckland, D., et al. (2013). Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): A randomised, open-label, phase 3 trial. Lancet Oncology, 14, 823–833.

    CAS  Google Scholar 

  • Wong, L. F., Yip, P. K., Battaglia, A., Grist, J., Corcoran, J., Maden, M., et al. (2006). Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord. Nature Neuroscience, 9, 243–250.

    CAS  PubMed  Google Scholar 

  • Wu, D., Zhang, Y., Bo, X., Huang, W., Xiao, F., Zhang, X., et al. (2007). Actions of neuropoietic cytokines and cyclic AMP in regenerative conditioning of rat primary sensory neurons. Experimental Neurology, 204, 66–76.

    CAS  PubMed  Google Scholar 

  • Wujek, J. R., & Lasek, R. J. (1983). Correlation of axonal regeneration and slow component B in two branches of a single axon. Journal of Neuroscience, 3, 243–251.

    CAS  PubMed  Google Scholar 

  • Xiao, H. S., Huang, Q. H., Zhang, F. X., Bao, L., Lu, Y. J., Guo, C., et al. (2002). Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proceedings of the National Academy of Sciences of the USA, 99, 8360–8365.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu, Y., Gu, Y., Wu, P., Li, G. W., & Huang, L. Y. (2003). Efficiencies of transgene expression in nociceptive neurons through different routes of delivery of adeno-associated viral vectors. Human Gene Therapy, 14, 897–906.

    CAS  PubMed  Google Scholar 

  • Yip, P. K., Wong, L. F., Sears, T. A., Yanez-Munoz, R. J., & McMahon, S. B. (2010). Cortical overexpression of neuronal calcium sensor-1 induces functional plasticity in spinal cord following unilateral pyramidal tract injury in rat. PLoS Biology, 8, e1000399.

    PubMed Central  PubMed  Google Scholar 

  • Zhao, R. R., Andrews, M. R., Wang, D., Warren, P., Gullo, M., Schnell, L., et al. (2013). Combination treatment with anti-Nogo-A and chondroitinase ABC is more effective than single treatments at enhancing functional recovery after spinal cord injury. European Journal of Neuroscience, 38, 2946–2961.

    PubMed  Google Scholar 

  • Zhao, R. R., & Fawcett, J. W. (2013). Combination treatment with chondroitinase ABC in spinal cord injury–breaking the barrier. Neuroscience Bulletin, 29, 477–483.

    CAS  PubMed  Google Scholar 

  • Zou, H., Ho, C., Wong, K., & Tessier-Lavigne, M. (2009). Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons. Journal of Neuroscience, 29, 7116–7123.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the editorial help of Dr. Matthew Mason.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitish D. Fagoe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagoe, N.D., van Heest, J. & Verhaagen, J. Spinal Cord Injury and the Neuron-Intrinsic Regeneration-Associated Gene Program. Neuromol Med 16, 799–813 (2014). https://doi.org/10.1007/s12017-014-8329-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-014-8329-3

Keywords

Navigation