Skip to main content
Log in

Regulation of microRNA Expression by Induction of Bidirectional Synaptic Plasticity

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Activity-induced protein synthesis is critical for long-lasting synaptic plasticity and subject to tight controls. MicroRNAs (miRNAs) are negative regulators of mRNA translation, but their role during synaptic plasticity is not clear. In this study, we have investigated how induction of long-term potentiation (LTP) and long-term depression (LTD) regulates the expression of miRNAs. Using miRNA arrays, we determined the temporal expression profiles of 62 hippocampal miRNAs following induction of chemical LTP (C-LTP) and metabotropic glutamate receptor-dependent LTD (mGluR-LTD). Several striking features were observed. First, C-LTP or mGluR-LTD induction changed the expression levels of most hippocampal miRNAs. Second, the majority of miRNAs regulated by C-LTP or mGluR-LTD induction followed a similar temporal expression profile. Third, most miRNAs were regulated by both C-LTP and mGluR-LTD induction, but displayed distinct expression dynamics. Fourth, many miRNAs were upregulated at specific time points C-LTP and mGluR-LTD induction, suggesting that C-LTP and mGluR-LTD induction elicits miRNA-mediated suppression of mRNA translation. We propose that the upregulated miRNA expression provides a mechanism to prevent excess protein synthesis during the expression of synaptic plasticity. The extensive regulation of miRNA expression by C-LTP and mGluR-LTD induction suggests a critical role of miRNAs in synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Fonseca, R., Nagerl, U. V., & Bonhoeffer, T. (2006). Neuronal activity determines the protein synthesis dependence of long-term potentiation. Nature Neuroscience, 9, 478–480. doi:10.1038/nn1667.

    Article  CAS  PubMed  Google Scholar 

  • Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., Baskerville, S., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833–838. doi:10.1126/science.1109020.

    Article  CAS  PubMed  Google Scholar 

  • Gong, R., Park, C. S., Rezaei Abbassi, N., & Tang, S.-J. (2006). Roles of glutamate receptors and the mTOR signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons. The Journal of Biological Chemistry, 281, 18802–18815. doi:10.1074/jbc.M512524200.

    Article  CAS  PubMed  Google Scholar 

  • Gong, R., & Tang, S.-J. (2006). Mitogen-activated protein kinase signaling is essential for activity-dependent dendritic protein synthesis. NeuroReport, 17, 1575–1578. doi:10.1097/01.wnr.0000234742.42818.ff.

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa, T., Rusakov, D. A., Bliss, T. V. P., & Fine, A. (1995). Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP. The Journal of Neuroscience, 15, 5560–5573.

    CAS  PubMed  Google Scholar 

  • Hou, L., & Klann, E. (2004). Activation of the phosphoinositide 3-kinase-akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. The Journal of Neuroscience, 24, 6352–6361. doi:10.1523/JNEUROSCI.0995-04.2004.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y. S., Jung, M. Y., Sarkissian, M., & Richter, J. D. (2002). N-methyl-d-aspartate receptor signaling results in Aroura kinase-catalyzed CPEB phosphorylation and alphaCamKII mRNA polyadenylation at synapses. The EMBO Journal, 21, 2139–2148. doi:10.1093/emboj/21.9.2139.

    Article  CAS  PubMed  Google Scholar 

  • Huber, K. M., Kayser, M. S., & Bear, M. F. (2000). Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science, 288, 1254–1257. doi:10.1126/science.288.5469.1254.

    Article  CAS  PubMed  Google Scholar 

  • Kandel, E. R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science, 294, 1030–1038. doi:10.1126/science.1067020.

    Article  CAS  PubMed  Google Scholar 

  • Kelleher, R. J., III, Govindarajan, A., Jung, H. Y., Kang, H., & Tonegawa, S. (2004a). Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell, 116, 467–479. doi:10.1016/S0092-8674(04)00115-1.

    Article  CAS  PubMed  Google Scholar 

  • Kelleher, R. J., III, Govindarajan, A., & Tonegawa, S. (2004b). Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron, 44, 59–73. doi:10.1016/j.neuron.2004.09.013.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Krichevsky, A., Grad, Y., Hayes, G. D., Kosik, K. S., Church, G. M., et al. (2004). Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proceedings of the National Academy of Sciences of the United States of America, 101, 360–365. doi:10.1073/pnas.2333854100.

    Article  CAS  PubMed  Google Scholar 

  • Kosik, K. S., & Krichevsky, A. M. (2005). The elegance of the microRNAs: a neuronal perspective. Neuron, 47, 779–782. doi:10.1016/j.neuron.2005.08.019.

    Article  CAS  PubMed  Google Scholar 

  • Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K., & Kosik, K. S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA (New York, N.Y.), 9, 1274–1281. doi:10.1261/rna.5980303.

    CAS  Google Scholar 

  • Lugli, G., Larson, J., Martone, M. E., Jones, Y., & Smalheiser, N. R. (2005). Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. Journal of Neurochemistry, 94, 896–905. doi:10.1111/j.1471-4159.2005.03224.x.

    Article  CAS  PubMed  Google Scholar 

  • Lugli, G., Torvik, V. I., Larson, J., & Smalheiser, N. R. (2008). Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. Journal of Neurochemistry, 106, 650–661.

    Article  CAS  PubMed  Google Scholar 

  • Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283–289. doi:10.1038/nature04367.

    Article  CAS  PubMed  Google Scholar 

  • Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., & Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 5, R13. doi:10.1186/gb-2004-5-3-r13.

    Article  PubMed  Google Scholar 

  • Sutton, M. A., & Schuman, E. M. (2006). Dendritic protein synthesis, synaptic plasticity, and memory. Cell, 127, 49–58. doi:10.1016/j.cell.2006.09.014.

    Article  CAS  PubMed  Google Scholar 

  • Tang, S. J., Reis, G., Kang, H., Gingras, A. C., Sonenberg, N., & Schuman, E. M. (2002). A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 99, 467–472. doi:10.1073/pnas.012605299.

    Article  CAS  PubMed  Google Scholar 

  • Tang, S. J., & Schuman, E. M. (2002). Protein synthesis in the dendrite. Philosophical Transactions of the Royal Society of London, B Biological Sciences, 357, 521–529. doi:10.1098/rstb.2001.0887.

    Article  CAS  Google Scholar 

  • Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H., et al. (2005). From the cover: a cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 16426–16431. doi:10.1073/pnas.0508448102.

    Article  CAS  PubMed  Google Scholar 

  • Wells, D. G., Dong, X., Quinlan, E. M., Huang, Y. S., Bear, M. F., Richter, J. D., et al. (2001). A role for the cytoplasmic polyadenylation element in NMDA receptor-regulated mRNA translation in neurons. The Journal of Neuroscience, 21, 9541–9548.

    CAS  PubMed  Google Scholar 

  • Wu, L., Wells, D., Tay, J., Mendis, D., Abbott, M.-A., Barnitt, A., et al. (1998). CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of a-CAMKII mRNA at synapses. Neuron, 21, 1129–1139. doi:10.1016/S0896-6273(00)80630-3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Ruomu Gong for designing the RT-PCR primers. S. J. T. was supported by the American Heart Association and the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Jun Tang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental Table 1

miRNA above threshold in hippocampus (XLS 16 kb)

Supplemental Table 2

miRNA regulated by C-LTP (XLS 35 kb)

Supplemental Table 3

miRNA regulated by mGluR-LTD (XLS 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, C.S., Tang, SJ. Regulation of microRNA Expression by Induction of Bidirectional Synaptic Plasticity. J Mol Neurosci 38, 50–56 (2009). https://doi.org/10.1007/s12031-008-9158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9158-3

Keywords

Navigation