Skip to main content

Advertisement

Log in

The Cdk5/p35 Kinases Modulate Leptin-Induced STAT3 Signaling

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Cyclin-dependent kinase (Cdk) 5 is ubiquitously expressed in the brain and plays an essential role in central nervous system development and synaptic plasticity. The p35 kinase is a neuronal specific activator of Cdk5. Here, we show for the first time that Cdk5 activation modulates leptin signaling. P35 and its metabolite p25 were colocalized with the leptin receptor ObR in selective neurons in the hypothalamus. Overexpression of p35 alone was sufficient to induce the transcriptional activation of signal transducer and activator of transcription 3 (STAT3) in a cellular model. In retinoic acid-differentiated SH-SY5Y neuronal cells where ObRb was induced, leptin increased the expression of Cdk5, p35, and p25 kinases. The time course of induction coincided with that of phosphorylated (p)-STAT3. When Cdk5 activity was inhibited, either by roscovitine or overexpression of dominant negative Cdk5, there was a reduction of pSTAT3 activation. The results show that the activation of Cdk5 by p35 sustained leptin-induced pSTAT3 at 3–6 h. Thus, p35 is a novel modulator of leptin-induced STAT3 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Banks, W. A., Kastin, A. J., Huang, W., Jaspan, J. B., & Maness, L. M. (1996). Leptin enters the brain by a saturable system independent of insulin. Peptides, 17, 305–311. doi:10.1016/0196-9781(96)00025-3.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, K., Mandelkow, E. M., Biernat, J., Piwnica-Worms, H., & Mandelkow, E. (1993). Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Letters, 336, 417–424. doi:10.1016/0014-5793(93)80849-P.

    Article  PubMed  CAS  Google Scholar 

  • Benomar, Y., Roy, A. F., Aubourg, A., Djiane, J., & Taouis, M. (2005). Cross down-regulation of leptin and insulin receptor expression and signalling in a human neuronal cell line. The Biochemical Journal, 388, 929–939. doi:10.1042/BJ20041621.

    Article  PubMed  CAS  Google Scholar 

  • Bjorbak, C., Lavery, H. J., Bates, S. H., Olson, R. K., Davis, S. M., Flier, J. S., et al. (2000). SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. The Journal of Biological Chemistry, 275, 40649–40657. doi:10.1074/jbc.M007577200.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, Z. H., Fu, A. K., & Ip, N. Y. (2006). Synaptic roles of Cdk5: Implications in higher cognitive functions and neurodegenerative diseases. Neuron, 50, 13–18. doi:10.1016/j.neuron.2006.02.024.

    Article  PubMed  CAS  Google Scholar 

  • Fu, A. K., Fu, W. Y., Ng, A. K., Chien, W. W., Ng, Y. P., Wang, J. H., et al. (2004). Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. Proceedings of the National Academy of Sciences of the United States of America, 101, 6728–6733. doi:10.1073/pnas.0307606100.

    Article  PubMed  CAS  Google Scholar 

  • Garris, D. R. (1989). Morphometric analysis of obesity (ob/ob)- and diabetes (db/db)-associated hypothalamic neuronal degeneration in C57BL/KsJ mice. Brain Research, 501, 162–170. doi:10.1016/0006-8993(89)91037-8.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Z., Jiang, H., Xu, X., Duan, W., & Mattson, M. P. (2008). Leptin-mediated cell survival signaling in hippocampal neurons mediated by JAK STAT3 and mitochondrial stabilization. The Journal of Biological Chemistry, 283, 1754–1763. doi:10.1074/jbc.M703753200.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, J. (2007). Leptin: A diverse regulator of neuronal function. Journal of Neurochemistry, 100, 307–313. doi:10.1111/j.1471-4159.2006.04205.x.

    Article  PubMed  CAS  Google Scholar 

  • He, Y., Li, H. L., Xie, W. Y., Yang, C. Z., Yu, A. C., & Wang, Y. (2007). The presence of active Cdk5 associated with p35 in astrocytes and its important role in process elongation of scratched astrocyte. Glia, 55, 573–583. doi:10.1002/glia.20485.

    Article  PubMed  Google Scholar 

  • Hellmich, M. R., Pant, H. C., Wada, E., & Battey, J. F. (1992). Neuronal cdc2-like kinase: A cdc2-related protein kinase with predominantly neuronal expression. Proceedings of the National Academy of Sciences of the United States of America, 89, 10867–10871. doi:10.1073/pnas.89.22.10867.

    Article  PubMed  CAS  Google Scholar 

  • Jang, E. H., Park, C. S., Lee, S. K., Pie, J. E., & Kang, J. H. (2007). Excessive nitric oxide attenuates leptin-mediated signal transducer and activator of transcription 3 activation. Life Sciences, 80, 609–617. doi:10.1016/j.lfs.2006.10.007.

    Article  PubMed  CAS  Google Scholar 

  • Kastin, A. J., Banks, W. A., Zadina, J. E., & Graf, M. V. (1983). Brain peptides: The dangers of constricted nomenclatures. Life Sciences, 32, 295–301. doi:10.1016/0024-3205(3)90073-5.

    Article  PubMed  CAS  Google Scholar 

  • Kastin, A. J., & Pan, W. (2006). Intranasal leptin: Blood–brain barrier bypass (BBBB) for obesity? Endocrinology, 147, 2086–2087. doi:10.1210/en.2006-0208.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, L., & Ropke, C. (2002). Suppressors of cytokine signalling: SOCS. APMIS, 110, 833–844. doi:10.1034/j.1600-0463.2002.1101201.x.

    Article  PubMed  CAS  Google Scholar 

  • Levin, B. E., Dunn-Meynell, A. A., & Banks, W. A. (2004). Obesity-prone rats have normal blood–brain barrier transport but defective central leptin signaling before obesity onset. The American Journal of Physiology, 286, R143–R150.

    CAS  Google Scholar 

  • Lew, J., Huang, Q. Q., Qi, Z., Winkfein, R. J., Aebersold, R., Hunt, T., et al. (1994). A brain-specific activator of cyclin-dependent kinase 5. Nature, 371, 423–426. doi:10.1038/371423a0.

    Article  PubMed  CAS  Google Scholar 

  • Lew, J., Qi, Z., Huang, Q. Q., Paudel, H., Matsuura, I., Matsushita, M., et al. (1995). Structure, function, and regulation of neuronal Cdc2-like protein kinase. Neurobiology of Aging, 16, 263–268. doi:10.1016/0197-4580(95)00014-6.

    Article  PubMed  CAS  Google Scholar 

  • Lin, H., Chen, M. C., Chiu, C. Y., Song, Y. M., & Lin, S. Y. (2007). Cdk5 regulates STAT3 activation and cell proliferation in medullary thyroid carcinoma cells. The Journal of Biological Chemistry, 282, 2776–2784. doi:10.1074/jbc.M607234200.

    Article  PubMed  CAS  Google Scholar 

  • Meijer, L., Borgne, A., Mulner, O., Chong, J. P., Blow, J. J., Inagaki, N., et al. (1997). Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. European Journal of Biochemistry, 243, 527–536. doi:10.1111/j.1432-1033.1997.t01-2-00527.x.

    Article  PubMed  CAS  Google Scholar 

  • Meyerson, M., Enders, G. H., Wu, C. L., Su, L. K., Gorka, C., Nelson, C., et al. (1992). A family of human cdc2-related protein kinases. The EMBO Journal, 11, 2909–2917.

    PubMed  CAS  Google Scholar 

  • O’Rourke, L., & Shepherd, P. R. (2002). Biphasic regulation of extracellular-signal-regulated protein kinase by leptin in macrophages: Role in regulating STAT3 Ser727 phosphorylation and DNA binding. The Biochemical Journal, 364, 875–879. doi:10.1042/BJ20020295.

    Article  PubMed  Google Scholar 

  • Ohshima, T., Gilmore, E. C., Longenecker, G., Jacobowitz, D. M., Brady, R. O., Herrup, K., et al. (1999). Migration defects of cdk5(−/−) neurons in the developing cerebellum is cell autonomous. The Journal of Neuroscience, 19, 6017–6026.

    PubMed  CAS  Google Scholar 

  • Pan, W., Hsuchou, H., He, Y., Sakharkar, A., Cain, C., Yu, C., et al. (2008a). Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice. Endocrinology, 149, 2798–2806. doi:10.1210/en.2007-1673.

    Article  PubMed  CAS  Google Scholar 

  • Pan, W., Hsuchou, H., Tu, H., & Kastin, A. J. (2008b). Developmental changes of leptin receptors in cerebral microvessels: Unexpected relation to leptin transport. Endocrinology, 149, 877–885. doi:10.1210/en.2007-0893.

    Article  PubMed  CAS  Google Scholar 

  • Pan, W., & Kastin, A. J. (2007a). Adipokines and the blood–brain barrier. Peptides, 28, 1317–1330. doi:10.1016/j.peptides.2007.04.023.

    Article  PubMed  CAS  Google Scholar 

  • Pan, W., & Kastin, A. J. (2007b). Mahogany, blood–brain barrier, and fat mass surge in A(VY) mice. International Journal of Obesity, 31, 1030–1032. doi:10.1038/sj.ijo.0803536.

    Article  PubMed  CAS  Google Scholar 

  • Pan, W., Tu, H., Hsuchou, H., Daniel, J., & Kastin, A. J. (2007). Unexpected amplification of leptin-induced Stat3 signaling by urocortin: Implications for obesity. Journal of Molecular Neuroscience, 33, 232–238. doi:10.1007/s12031-007-0071-y.

    Article  PubMed  CAS  Google Scholar 

  • Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P., & Tsai, L. H. (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402, 615–622. doi:10.1038/45159.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum, C. I., Tota, M., Cully, D., Smith, T., Collum, R., Qureshi, S., et al. (1996). Functional STAT 1 and 3 signaling by the leptin receptor (OB-R); reduced expression of the rat fatty leptin receptor in transfected cells. Endocrinology, 137, 5178–5181. doi:10.1210/en.137.11.5178.

    Article  PubMed  CAS  Google Scholar 

  • Russo, V. C., Metaxas, S., Kobayashi, K., Harris, M., & Werther, G. A. (2004). Antiapoptotic effects of leptin in human neuroblastoma cells. Endocrinology, 145, 4103–4112. doi:10.1210/en.2003-1767.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, M. W., Woods, S. C., Porte Jr, D., Seeley, R. J., & Baskin, D. G. (2000). Central nervous system control of food intake. Nature, 404, 661–671.

    PubMed  CAS  Google Scholar 

  • Sitko, J. C., Yeh, B., Kim, M., Zhou, H., Takaesu, G., Yoshimura, A., et al. (2008). SOCS3 regulates p21 expression and cell cycle arrest in response to DNA damage. Cell Signal, 20, 2221–2230.

    Article  PubMed  CAS  Google Scholar 

  • Tang, D., Lee, K. Y., Qi, Z., Matsuura, I., & Wang, J. H. (1996). Neuronal Cdc2-like kinase: From cell cycle to neuronal function. Biochemistry and Cell Biology, 74, 419–429.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, L. H., Delalle, I., Caviness Jr, V. S., Chae, T., & Harlow, E. (1994). p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature, 371, 419–423. doi:10.1038/371419a0.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, L. H., Takahashi, T., Caviness Jr, V. S., & Harlow, E. (1993). Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development, 119, 1029–1040.

    PubMed  CAS  Google Scholar 

  • Tseng, H. C., Zhou, Y., Shen, Y., & Tsai, L. H. (2002). A survey of Cdk5 activator p35 and p25 levels in Alzheimer's disease brains. FEBS Letters, 523, 58–62. doi:10.1016/S0014-5793(02)02934-4.

    Article  PubMed  CAS  Google Scholar 

  • Tu, H., Kastin, A. J., Hsuchou, H., & Pan, W. (2008). Soluble receptor inhibits leptin transport. Journal of Cellular Physiology, 214, 301–305. doi:10.1002/jcp.21195.

    Article  PubMed  CAS  Google Scholar 

  • Tu, H., Pan, W., Feucht, L., & Kastin, A. J. (2007). Convergent trafficking pattern of leptin after endocytosis mediated by ObRa–ObRd. Journal of Cellular Physiology, 212, 215–222. doi:10.1002/jcp.21020.

    Article  PubMed  CAS  Google Scholar 

  • Vaisse, C., Halaas, J. L., Horvath, C. M., Darnell Jr, J. E., Stoffel, M., & Friedman, J. M. (1996). Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nature Genetics, 14, 95–97. doi:10.1038/ng0996-95.

    Article  PubMed  CAS  Google Scholar 

  • Veeranna, S. K. T., Takahashi, M., Grant, P., & Pant, H. C. (2000). Cdk5 and MAPK are associated with complexes of cytoskeletal proteins in rat brain. Brain Research. Molecular Brain Research, 76, 229–236. doi:10.1016/S0169-328X(00)00003-6.

    Article  PubMed  CAS  Google Scholar 

  • Waelput, W., Verhee, A., Broekaert, D., Eyckerman, S., Vandekerckhove, J., Beattie, J. H., et al. (2000). Identification and expression analysis of leptin-regulated immediate early response and late target genes. The Biochemical Journal, 348(Pt 1), 55–61. doi:10.1042/0264-6021:3480055.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Xie, W. Y., He, Y., Wang, M., Yang, Y. R., Zhang, Y., et al. (2006). Role of CDK5 in neuroprotection from serum deprivation by mu-opioid receptor agonist. Experimental Neurology, 202, 313–323. doi:10.1016/j.expneurol.2006.06.005.

    Article  PubMed  CAS  Google Scholar 

  • Xu, L., Rensing, N., Yang, X. F., Zhang, H. X., Thio, L. L., Rothman, S. M., et al. (2008). Leptin inhibits 4-aminopyridine- and pentylenetetrazole-induced seizures and AMPAR-mediated synaptic transmission in rodents. The Journal of Clinical Investigation, 118, 272–280. doi:10.1172/JCI33009.

    Article  PubMed  CAS  Google Scholar 

  • Yan, Z., Chi, P., Bibb, J. A., Ryan, T. A., & Greengard, P. (2002). Roscovitine: A novel regulator of P/Q-type calcium channels and transmitter release in central neurons. The Journal of Physiology, 540, 761–770. doi:10.1113/jphysiol.2001.013376.

    Article  PubMed  CAS  Google Scholar 

  • Zabolotny, J. M., Bence-Hanulec, K. K., Stricker-Krongrad, A., Haj, F., Wang, Y., Minokoshi, Y., et al. (2002). PTP1B regulates leptin signal transduction in vivo. Developmental Cell, 2, 489–495. doi:10.1016/S1534-5807(02)00148-X.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, M., Leung, C. L., & Liem, R. K. (1998). Region-specific expression of cyclin-dependent kinase 5 (cdk5) and its activators, p35 and p39, in the developing and adult rat central nervous system. Journal of Neurobiology, 35, 141–159. doi:10.1002/(SICI)1097-4695(199805)35:2<141::AID-NEU2>3.0.CO;2-4.

    Article  PubMed  CAS  Google Scholar 

  • Zlokovic, B. V., Jovanovic, S., Miao, W., Samara, S., Verma, S., & Farrell, C. L. (2000). Differential regulation of leptin transport by the choroid plexus and blood–brain barrier and high affinity transport systems for entry into hypothalamus and across the blood–cerebrospinal fluid barrier. Endocrinology, 141, 1434–1441. doi:10.1210/en.141.4.1434.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH (DK54880, NS45751, NS46528, and NS62291). The Cdk5-pcDNA3.1(–) (WT-Cdk5), dominant negative (kinase inactive) D144N Cdk5-pcDNA3.1(–) (DN-Cdk5), and p35-pEGFP-C2 plasmids originated from Prof. Yun Wang’s Laboratory (Institute of Neuroscience, Peking University, Beijing, China). The ObRb-pcDNA3.1(–) plasmid was kindly provided by Dr. Christian Bjorbaek (Harvard Medical School, Boston, MA, USA) and the pAH-Luc luciferase reporter plasmid for STAT3 activation was kindly provided by Dr. Charles Rosenblum at Merck Research Laboratories (Rahway, NJ, USA). We thank Dr. George Argyropoulos in PBRC for assistance in electroporation, Loula Burton for manuscript submission, and other members of the BBB Group for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Kastin, A.J., Hsuchou, H. et al. The Cdk5/p35 Kinases Modulate Leptin-Induced STAT3 Signaling. J Mol Neurosci 39, 49–58 (2009). https://doi.org/10.1007/s12031-008-9174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9174-3

Keywords

Navigation