Skip to main content

Advertisement

Log in

HCN Channels Modulate the Activity of the Subthalamic Nucleus In Vivo

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The subthalamic nucleus is a key component in the indirect pathway of the basal ganglia, which mediates a variety of motor functions. The subthalamic nucleus neurons have intrinsic pacemaking properties. Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are expressed in the central nervous system, including the subthalamic nucleus. However, the in vivo modulation of HCN channels in the subthalamic nucleus remains relatively obscure. To investigate the direct effects of HCN channels in the subthalamic nucleus, multi-barrel extracellular recordings and behavioral tests were performed in the present study. In 42 out of the 89 subthalamic nucleus neurons, micropressure ejection of HCN channel inhibitor, ZD7288 (0.05 mM), decreased the spontaneous firing rate from 11.6 ± 1.8 to 5.7 ± 1.3 Hz (P < 0.001). The average decrease was 56.7 ± 5.3 %. In another 47 out of the 89 subthalamic nucleus neurons, micropressure ejection of ZD7288 increased the spontaneous firing rate from 9.5 ± 1.6 to 16.3 ± 2.4 Hz (P < 0.001), with the average increase of 142.2 ± 29.8 %. Activation of HCN channels by 8-Br-cAMP also produced bidirectional modulation on the firing rate of the subthalamic nucleus neurons. Furthermore, unilateral microinjection of ZD7288 or 8-Br-cAMP produced postural behavior in awake rats. The present electrophysiological and behavioral findings demonstrated that the pharmacological blockade or activation of HCN channels produces bidirectional modulation on the excitability of the subthalamic nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abedi PM, Delaville C, De Deurwaerdère P, Benjelloun W, Benazzouz A (2013) Intrapallidal administration of 6-hydroxydopamine mimics in large part the electrophysiological and behavioral consequences of major dopamine depletion in the rat. Neuroscience 236:289–297

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    Article  CAS  PubMed  Google Scholar 

  • Aponte Y, Lien CC, Reisinger E, Jonas P (2006) Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus. J Physiol 574:229–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atherton JF, Kitano K, Baufreton J et al (2010) Selective participation of somatodendritic HCN channels in inhibitory but not excitatory synaptic integration in neurons of the subthalamic nucleus. J Neurosci 30:16025–16040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baruscotti M, DiFrancesco D (2004) Pacemaker channels. Ann N Y Acad Sci 1015:111–121

    Article  PubMed  Google Scholar 

  • Baruscotti M, Bucchi A, DiFrancesco D (2005) Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol Ther 107:59–79

    Article  CAS  PubMed  Google Scholar 

  • Baunez C, Nieoullon A, Amalric M (1995) In a rat model of parkinsonism, lesions of the subthalamic nucleus reverse increases of reaction time but induce a dramatic premature responding deficit. J Neurosci 15:6531–6541

    CAS  PubMed  Google Scholar 

  • Baunez C, Amalric M, Robbins TW (2002) Enhanced food-related motivation after bilateral lesions of the subthalamic nucleus. J Neurosci 22:562–568

    CAS  PubMed  Google Scholar 

  • Benazzouz A, Gross C, Féger J, Boraud T, Bioulac B (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5:382–389

    Article  CAS  PubMed  Google Scholar 

  • Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520

    CAS  PubMed  Google Scholar 

  • Bevan MD, Magill PJ, Hallworth NE, Bolam JP, Wilson CJ (2002) Regulation of the timing and pattern of action potential generation in rat subthalamic neurons in vitro by GABA-A IPSPs. J Neurophysiol 87:1348–1362

    CAS  PubMed  Google Scholar 

  • Bevan MD, Atherton JF, Baufreton J (2006) Cellular principles underlying normal and pathological activity in the subthalamic nucleus. Curr Opin Neurobiol 16:621–628

    Article  CAS  PubMed  Google Scholar 

  • Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 89:847–885

    Article  CAS  PubMed  Google Scholar 

  • Brown P (2003) Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 18:357–363

    Article  PubMed  Google Scholar 

  • Chen L, Xie JX, Fung KS, Yung WH (2007) Zolpidem modulates GABA(A) receptor function in subthalamic nucleus. Neurosci Res 58:77–85

    Article  CAS  PubMed  Google Scholar 

  • Chu HY, Zhen X (2010) Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels in the regulation of midbrain dopamine systems. Acta Pharmacol Sin 31:1036–1043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crossman AR (2000) Functional anatomy of movement disorders. J Anat 196:519–525

    Article  PubMed Central  PubMed  Google Scholar 

  • DiFrancesco D (1981) A new interpretation of the pace-maker current in calf Purkinje fibres. J Physiol 314:359–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Do MT, Bean BP (2003) Subthreshold sodium currents and pacemaking of subthalamic neurons: modulation by slow inactivation. Neuron 39:109–120

    Article  CAS  PubMed  Google Scholar 

  • Dybdal D, Gale K (2000) Postural and anticonvulsant effects of inhibition of the rat subthalamic nucleus. J Neurosci 20:6728–6733

    CAS  PubMed  Google Scholar 

  • Gillies A, Willshaw D (2006) Membrane channel interactions underlying rat subthalamic projection neuron rhythmic and bursting activity. J Neurophysiol 95:2352–2365

    Article  PubMed  Google Scholar 

  • Guridi J, Herrero MT, Herrero MT, Guillen J, Obeso JA (1994) Subthalamotomy improves MPTP-induced parkinsonism in monkeys. Stereotact Funct Neurosurg 62:98–102

    Article  CAS  PubMed  Google Scholar 

  • Hamada I, DeLong MR (1992) Excitotoxic acid lesions of the primate subthalamic nucleus result in transient dyskinesias of the contralateral limbs. J Neurophysiol 68:1850–1858

    CAS  PubMed  Google Scholar 

  • Kase D, Inoue T, Imoto K (2012) Roles of the subthalamic nucleus and subthalamic HCN channels in absence seizures. J Neurophysiol 107:393–406

    Article  CAS  PubMed  Google Scholar 

  • Kole MH, Bräuer AU, Stuart GJ (2007) Inherited cortical HCN1 channel loss amplifies dendritic calcium electrogenesis and burst firing in a rat absence epilepsy model. J Physiol 578:507–525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lüthi A, McCormick DA (1998) H-current: properties of a neuronal and network pacemaker. Neuron 21:9–12

    Article  PubMed  Google Scholar 

  • Maccaferri G, McBain CJ (1996) The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurones. J Physiol 497:119–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meurers BH, Dziewczapolski G, Bittner A, Shi T, Kamme F, Shults CW (2009) Dopamine depletion induced up-regulation of HCN3 enhances rebound excitability of basal ganglia output neurons. Neurobiol Dis 34:178–188

    Article  CAS  PubMed  Google Scholar 

  • Miwa H, Nishi K, Fuwa T, Mizuno Y (2000) Effects of blockade of metabotropic glutamate receptors in the subthalamic nucleus on haloperidol-induced Parkinsonism in rats. Neurosci Lett 282:21–24

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Kita H, Kitai ST (1987) Electrical membrane properties of rat subthalamic neurons in an in vitro slice preparation. Brain Res 437:35–44

    Article  CAS  PubMed  Google Scholar 

  • Notomi T, Shigemoto R (2004) Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain. J Comp Neurol 471:241–276

    Article  CAS  PubMed  Google Scholar 

  • Park K, Yi JH, Kim H, Choi K, Kang SJ, Shin KS (2011) HCN channel activity-dependent modulation of inhibitory synaptic transmission in the rat basolateral amygdala. Biochem Biophys Res Commun 404:952–957

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, San Diego

    Google Scholar 

  • Plenz D, Kital ST (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400:677–682

    Article  CAS  PubMed  Google Scholar 

  • Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480

    Article  CAS  PubMed  Google Scholar 

  • Santoro B, Tibbs GR (1999) The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann N Y Acad Sci 868:741–764

    Article  CAS  PubMed  Google Scholar 

  • Santoro B, Chen S, Lüthi A et al (2000) Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J Neurosci 20:5264–5275

    CAS  PubMed  Google Scholar 

  • Shah MM, Anderson AE, Leung V, Lin X, Johnston D (2004) Seizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons. Neuron 44:495–508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shin M, Brager D, Jaramillo TC, Johnston D, Chetkovich DM (2008) Mislocalization of h channel subunits underlies h channelopathy in temporal lobe epilepsy. Neurobiol Dis 32:26–36

    Article  PubMed Central  PubMed  Google Scholar 

  • Strauss U, Kole MH, Bräuer AU et al (2004) An impaired neocortical Ih is associated with enhanced excitability and absence epilepsy. Eur J Neurosci 19:3048–3058

    Article  PubMed  Google Scholar 

  • Wahl-Schott C, Biel M (2009) HCN channels: structure, cellular regulation and physiological function. Cell Mol Life Sci 66:470–494

    Article  CAS  PubMed  Google Scholar 

  • Wichmann T, DeLong MR (2003) Pathophysiology of Parkinson’s disease: the MPTP primate model of the human disorder. Ann N Y Acad Sci 991:199–213

    Article  CAS  PubMed  Google Scholar 

  • Yan ZQ, Liu SM, Li J et al (2012) Membrane resonance and its ionic mechanisms in rat subthalamic nucleus neurons. Neurosci Lett 506:160–165

    Article  CAS  PubMed  Google Scholar 

  • Yasoshima Y, Kai N, Yoshida S et al (2005) Subthalamic neurons coordinate basal ganglia function through differential neural pathways. J Neurosci 25:7743–7753

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (31070942, 81171208, 81200872) and the Doctoral Fund of the Ministry of Education of China (20123706110001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Sun or Lei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Ws., Jiang, YX., Han, XH. et al. HCN Channels Modulate the Activity of the Subthalamic Nucleus In Vivo. J Mol Neurosci 55, 260–268 (2015). https://doi.org/10.1007/s12031-014-0316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0316-5

Keywords

Navigation