Skip to main content

Advertisement

Log in

Regulated Proteolysis of APP and ApoE Receptors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The β-amyloid precursor protein (APP) shares intracellular and extracellular-binding partners with the family of receptors for apolipoprotein E (apoE). Binding of APP and apoE receptors to specific extracellular matrix proteins (F-spondin and Reelin) promotes their presence on the cell surface and influences whether they will interact with specific cytoplasmic adaptor proteins. Cleavage of APP and apoE receptors at the cell surface occurs by α-secretase activities; thus, the processing of these proteins can be regulated by their trafficking either to or from the cell surface. Their cleavages can also be regulated by tissue inhibitor of metalloproteinase-3 (TIMP-3), a metalloprotease inhibitor in the extracellular matrix. ApoE receptors have functions in neuronal migration during development and in proper synaptic function in the adult. Thus, the functions of apoE receptors and by analogy of APP will be modified by the various extracellular and intracellular interactions reviewed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

APP:

β-amyloid precursor protein

apoE:

apolipoprotein E

TIMP-3:

tissue inhibitor of metalloproteinase-3

AD:

Alzheimer’s disease

CTF:

C-terminal fragment

ADAM:

A disintegrin and metalloproteinase

LDLr:

low-density lipoprotein receptor

VLDLr:

very low-density lipoprotein receptor

ApoEr2:

apoE receptor 2

LRP:

low-density lipoprotein receptor-related protein

ICD:

intracellular domain

PSD:

post-synaptic density

PDZ:

PSD-95/Dlg/ZO-1

References

  1. Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061

    Article  PubMed  CAS  Google Scholar 

  2. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    PubMed  CAS  Google Scholar 

  3. Saunders AM (2001) Gene identification in Alzheimer’s disease. Pharmacogenomics 2:239–249

    Article  PubMed  CAS  Google Scholar 

  4. Reiss K, Ludwig A, Saftig P (2006) Breaking up the tie: disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. Pharmacol Ther 111:985–1006

    Article  PubMed  CAS  Google Scholar 

  5. Huse JT, Pijak DS, Leslie GJ, Lee VM, Doms RW (2000) Maturation and endosomal targeting of enzyme. The Alzheimer’s disease beta-secretasebeta-site amyloid precursor protein-cleaving. J Biol Chem 275:33729–33737

    Article  PubMed  CAS  Google Scholar 

  6. Rebeck GW, Reiter JS, Strickland DK, Hyman BT (1993) Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron 11:575–580

    Article  PubMed  CAS  Google Scholar 

  7. Roses AD (1994) Apolipoprotein E is a relevant susceptibility gene that affects the rate of expression of Alzheimer’s disease. Neurobiol Aging 15(Suppl 2):S165–S167

    Article  PubMed  Google Scholar 

  8. Roses AD (1998) Apolipoprotein E and Alzheimer’s disease. The tip of the susceptibility iceberg. Ann N Y Acad Sci 855:738–743

    Article  PubMed  CAS  Google Scholar 

  9. Herz J, Bock HH (2002) Lipoprotein receptors in the nervous system. Annu Rev Biochem 71:405–434

    Article  PubMed  CAS  Google Scholar 

  10. Harris-White ME, Frautschy SA (2005) Low density lipoprotein receptor-related proteins (LRPs), Alzheimer’s and cognition. Curr Drug Targets CNS Neurol Disord 4:469–480

    Article  PubMed  CAS  Google Scholar 

  11. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Mueller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    Article  PubMed  CAS  Google Scholar 

  12. Hoe HS, Rebeck GW (2005) Regulation of ApoE receptor proteolysis by ligand binding. Brain Res Mol Brain Res 137:31–39

    Article  PubMed  CAS  Google Scholar 

  13. Lleo A, Waldron E, von Arnim CA, Herl L, Tangredi MM, Peltan ID, Strickland DK, Koo EH, Hyman BT, Pietrzik CU, Berezovska O (2005) Low density lipoprotein receptor-related protein (LRP) interacts with presenilin 1 and is a competitive substrate of the amyloid precursor protein (APP) for gamma-secretase. J Biol Chem 280:27303–27309

    Article  PubMed  CAS  Google Scholar 

  14. von Arnim CA, Kinoshita A, Peltan ID, Tangredi MM, Herl L, Lee BM, Spoelgen R, Hshieh TT, Ranganathan S, Battey FD et al (2005) The low density lipoprotein receptor-related protein (LRP) is a novel beta-secretase (BACE1) substrate. J Biol Chem 280:17777–17785

    Article  CAS  Google Scholar 

  15. Rebeck GW, LaDu MJ, Estus S, Bu G, Weeber EJ (2006) The generation and function of soluble apoE receptors in the CNS. Mol Neurodegener 1:15

    Article  PubMed  CAS  Google Scholar 

  16. Trommsdorff M, Borg JP, Margolis B, Herz J (1998) Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J Biol Chem 273:33556–33560

    Article  PubMed  CAS  Google Scholar 

  17. Fiore F, Zambrano N, Minopoli G, Donini V, Duilio A, Russo T (1995) The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer’s amyloid precursor protein. J Biol Chem 270:30853–30856

    Article  PubMed  CAS  Google Scholar 

  18. Guenette SY, Chen J, Jondro PD, Tanzi RE (1996) Association of a novel human FE65-like protein with the cytoplasmic domain of the beta-amyloid precursor protein. Proc Natl Acad Sci USA 93:10832–10837

    Article  PubMed  CAS  Google Scholar 

  19. Kinoshita A, Whelan CM, Smith CJ, Mikhailenko I, Rebeck GW, Strickland DK, Hyman BT (2001) Demonstration by fluorescence resonance energy transfer of two sites of interaction between the low-density lipoprotein receptor-related protein and the amyloid precursor protein: role of the intracellular adapter protein Fe65. J Neurosci 21:8354–8361

    PubMed  CAS  Google Scholar 

  20. Pietrzik CU, Yoon IS, Jaeger S, Busse T, Weggen S, Koo EH (2004) FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J Neurosci 24:4259–4265

    Article  PubMed  CAS  Google Scholar 

  21. Rebeck GW, Moir RD, Mui S, Strickland DK, Tanzi RE, Hyman BT (2001) Association of membrane-bound amyloid precursor protein APP with the apolipoprotein E receptor LRP. Brain Res Mol Brain Res 87:238–245

    Article  PubMed  CAS  Google Scholar 

  22. Hoe HS, Magill LA, Guenette S, Fu Z, Vicini S, Rebeck GW (2006a) FE65 interaction with the ApoE receptor ApoEr2. J Biol Chem 281:24521–24530

    Article  PubMed  CAS  Google Scholar 

  23. Borg JP, Ooi J, Levy E, Margolis B (1996) The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol Cell Biol 16:6229–6241

    PubMed  CAS  Google Scholar 

  24. Mueller HT, Borg JP, Margolis B, Turner RS (2000) Modulation of amyloid precursor protein metabolism by X11alpha /Mint-1. A deletion analysis of protein–protein interaction domains. J Biol Chem 275:39302–39306

    Article  PubMed  CAS  Google Scholar 

  25. He X, Cooley K, Chung CH, Dashti N, Tang J (2007) Apolipoprotein receptor 2 and X11 alpha/beta mediate apolipoprotein E-induced endocytosis of amyloid-beta precursor protein and beta-secretase, leading to amyloid-beta production. J Neurosci 27:4052–4060

    Article  PubMed  CAS  Google Scholar 

  26. King GD, Turner RS (2004) Adaptor protein interactions: modulators of amyloid precursor protein metabolism and Alzheimer’s disease risk? Exp Neurol 185:208–219

    Article  PubMed  CAS  Google Scholar 

  27. Ho A, Sudhof TC (2004) Binding of F-spondin to amyloid-beta precursor protein: a candidate amyloid-beta precursor protein ligand that modulates amyloid-beta precursor protein cleavage. Proc Natl Acad Sci USA 101:2548–2553

    Article  PubMed  CAS  Google Scholar 

  28. Hoe HS, Wessner D, Beffert U, Becker AG, Matsuoka Y, Rebeck GW (2005) F-spondin interaction with the apolipoprotein E receptor ApoEr2 affects processing of amyloid precursor protein. Mol Cell Biol 25:9259–9268

    Article  PubMed  CAS  Google Scholar 

  29. Feinstein Y, Borrell V, Garcia C, Burstyn-Cohen T, Tzarfaty V, Frumkin A, Nose A, Okamoto H, Higashijima S, Soriano E, Klar A (1999) F-spondin and mindin: two structurally and functionally related genes expressed in the hippocampus that promote outgrowth of embryonic hippocampal neurons. Development 126:3637–3648

    PubMed  CAS  Google Scholar 

  30. Higashijima S, Nose A, Eguchi G, Hotta Y, Okamoto H (1997) Mindin/F-spondin family: novel ECM proteins expressed in the zebrafish embryonic axis. Dev Biol 192:211–227

    Article  PubMed  CAS  Google Scholar 

  31. Kounnas MZ, Moir RD, Rebeck GW, Bush AI, Argraves WS, Tanzi RE, Hyman BT, Strickland DK (1995) LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted beta-amyloid precursor protein and mediates its degradation. Cell 82:331–340

    Article  PubMed  CAS  Google Scholar 

  32. Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I, Sweatt JD, Li WP, Adelmann G, Frotscher M, Hammer RE, Herz J (2005) Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47:567–579

    Article  PubMed  CAS  Google Scholar 

  33. Hoe HS, Pocivavsek A, Chakraborty G, Fu Z, Vicini S, Ehlers MD, Rebeck GW (2006b) Apolipoprotein E receptor 2 interactions with the N-methyl-D-aspartate receptor. J Biol Chem 281:3425–3431

    Article  PubMed  CAS  Google Scholar 

  34. May P, Rohlmann A, Bock HH, Zurhove K, Marth JD, Schomburg ED, Noebels JL, Beffert U, Sweatt JD, Weeber EJ, Herz J (2004) Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol Cell Biol 24:8872–8883

    Article  PubMed  CAS  Google Scholar 

  35. Howell BW, Lanier LM, Frank R, Gertler FB, Cooper JA (1999) The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids. Mol Cell Biol 19:5179–5188

    PubMed  CAS  Google Scholar 

  36. Gotthardt M, Trommsdorff M, Nevitt MF, Shelton J, Richardson JA, Stockinger W, Nimpf J, Herz J (2000) Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J Biol Chem 275:25616–25624

    Article  PubMed  CAS  Google Scholar 

  37. Hoe HS, Tran TS, Matsuoka Y, Howell BW, Rebeck GW (2006c) DAB1 and Reelin effects on amyloid precursor protein and ApoE receptor 2 trafficking and processing. J Biol Chem 281:35176–35185

    Article  PubMed  CAS  Google Scholar 

  38. D’Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24:471–479

    Article  PubMed  CAS  Google Scholar 

  39. Herz J, Beffert U (2000) Apolipoprotein E receptors: linking brain development and Alzheimer’s disease. Nat Rev Neurosci 1:51–58

    Article  PubMed  CAS  Google Scholar 

  40. Beffert U, Morfini G, Bock HH, Reyna H, Brady ST, Herz J (2002) Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J Biol Chem 277:49958–49964

    Article  PubMed  CAS  Google Scholar 

  41. Benhayon D, Magdaleno S, Curran T (2003) Binding of purified Reelin to ApoER2 and VLDLR mediates tyrosine phosphorylation of Disabled-1. Brain Res Mol Brain Res 112:33–45

    Article  PubMed  CAS  Google Scholar 

  42. Bock HH, Jossin Y, Liu P, Forster E, May P, Goffinet AM, Herz J (2003) Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to Reelin signaling and is required for normal cortical lamination. J Biol Chem 278:38772–38779

    Article  PubMed  CAS  Google Scholar 

  43. Strasser V, Fasching D, Hauser C, Mayer H, Bock HH, Hiesberger T, Herz J, Weeber EJ, Sweatt JD, Pramatarova A et al (2004) Receptor clustering is involved in Reelin signaling. Mol Cell Biol 24:1378–1386

    Article  PubMed  CAS  Google Scholar 

  44. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701

    Article  PubMed  CAS  Google Scholar 

  45. Ando K, Iijima KI, Elliott JI, Kirino Y, Suzuki T (2001) Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of beta-amyloid. J Biol Chem 276:40353–40361

    Article  PubMed  CAS  Google Scholar 

  46. Homayouni R, Rice DS, Sheldon M, Curran T (1999) Disabled-1 binds to the cytoplasmic domain of amyloid precursor-like protein 1. J Neurosci 19:7507–7515

    PubMed  CAS  Google Scholar 

  47. Parisiadou L, Efthimiopoulos S (2007) Expression of mDab1 promotes the stability and processing of amyloid precursor protein and this effect is counteracted by X11alpha. Neurobiol Aging 28:377–388

    Article  PubMed  CAS  Google Scholar 

  48. Morimura T, Hattori M, Ogawa M, Mikoshiba K (2005) Disabled1 regulates the intracellular trafficking of reelin receptors. J Biol Chem 280:16901–16908

    Article  PubMed  CAS  Google Scholar 

  49. Chang Y, Tesco G, Jeong WJ, Lindsley L, Eckman EA, Eckman CB, Tanzi RE, Guenette SY (2003) Generation of the beta-amyloid peptide and the amyloid precursor protein C-terminal fragment gamma are potentiated by FE65L1. J Biol Chem 278:51100–51107

    Article  PubMed  CAS  Google Scholar 

  50. Duilio A, Faraonio R, Minopoli G, Zambrano N, Russo T (1998) Fe65L2: a new member of the Fe65 protein family interacting with the intracellular domain of the Alzheimer’s beta-amyloid precursor protein. Biochem J 330(Pt 1):513–519

    PubMed  CAS  Google Scholar 

  51. Guenette SY, Chang Y, Hyman BT, Tanzi RE, Rebeck GW (2002) Low-density lipoprotein receptor-related protein levels and endocytic function are reduced by overexpression of the FE65 adaptor protein, FE65L1. J Neurochem 82:755–762

    Article  PubMed  CAS  Google Scholar 

  52. Guenette SY, Chen J, Ferland A, Haass C, Capell A, Tanzi RE (1999) hFE65L influences amyloid precursor protein maturation and secretion. J Neurochem 73:985–993

    Article  PubMed  CAS  Google Scholar 

  53. Tanahashi H, Tabira T (1999) Genome structure and chromosomal mapping of the gene for Fe65L2 interacting with Alzheimer’s beta-amyloid precursor protein. Biochem Biophys Res Commun 258:385–389

    Article  PubMed  CAS  Google Scholar 

  54. Guenette S, Chang Y, Hiesberger T, Richardson JA, Eckman CB, Eckman EA, Hammer RE, Herz J (2006) Essential roles for the FE65 amyloid precursor protein-interacting proteins in brain development. Embo J 25:420–431

    Article  PubMed  CAS  Google Scholar 

  55. Herms J, Anliker B, Heber S, Ring S, Fuhrmann M, Kretzschmar H, Sisodia S, Muller U (2004) Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members. Embo J 23:4106–4115

    Article  PubMed  CAS  Google Scholar 

  56. Bressler SL, Gray MD, Sopher BL, Hu Q, Hearn MG, Pham DG, Dinulos MB, Fukuchi K, Sisodia SS, Miller MA et al (1996) cDNA cloning and chromosome mapping of the human Fe65 gene: interaction of the conserved cytoplasmic domains of the human beta-amyloid precursor protein and its homologues with the mouse Fe65 protein. Hum Mol Genet 5:1589–1598

    Article  PubMed  CAS  Google Scholar 

  57. Ermekova KS, Zambrano N, Linn H, Minopoli G, Gertler F, Russo T, Sudol M (1997) The WW domain of neural protein FE65 interacts with proline-rich motifs in Mena, the mammalian homolog of Drosophila enabled. J Biol Chem 272:32869–32877

    Article  PubMed  CAS  Google Scholar 

  58. Sabo SL, Ikin AF, Buxbaum JD, Greengard P (2001) The Alzheimer amyloid precursor protein (APP) and FE65, an APP-binding protein, regulate cell movement. J Cell Biol 153:1403–1414

    Article  PubMed  CAS  Google Scholar 

  59. Sabo SL, Lanier LM, Ikin AF, Khorkova O, Sahasrabudhe S, Greengard P, Buxbaum JD (1999) Regulation of beta-amyloid secretion by FE65, an amyloid protein precursor-binding protein. J Biol Chem 274:7952–7957

    Article  PubMed  CAS  Google Scholar 

  60. Santiard-Baron D, Langui D, Delehedde M, Delatour B, Schombert B, Touchet N, Tremp G, Paul MF, Blanchard V, Sergeant N et al (2005) Expression of human FE65 in amyloid precursor protein transgenic mice is associated with a reduction in beta-amyloid load. J Neurochem 93:330–338

    Article  PubMed  CAS  Google Scholar 

  61. Cao X, Sudhof TC (2001) A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293:115–120

    Article  PubMed  CAS  Google Scholar 

  62. Cao X, Sudhof TC (2004) Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. J Biol Chem 279:24601–24611

    Article  PubMed  CAS  Google Scholar 

  63. Tomita S, Ozaki T, Taru H, Oguchi S, Takeda S, Yagi Y, Sakiyama S, Kirino Y, Suzuki T (1999) Interaction of a neuron-specific protein containing PDZ domains with Alzheimer’s amyloid precursor protein. J Biol Chem 274:2243–2254

    Article  PubMed  CAS  Google Scholar 

  64. Okamoto M, Sudhof TC (1997) Mints, Munc18-interacting proteins in synaptic vesicle exocytosis. J Biol Chem 272:31459–31464

    Article  PubMed  CAS  Google Scholar 

  65. Lee DS, Tomita S, Kirino Y, Suzuki T (2000) Regulation of X11L-dependent amyloid precursor protein metabolism by XB51, a novel X11L-binding protein. J Biol Chem 275:23134–23138

    Article  PubMed  CAS  Google Scholar 

  66. Xie Z, Romano DM, Tanzi RE (2005) RNA interference-mediated silencing of X11alpha and X11beta attenuates amyloid beta-protein levels via differential effects on beta-amyloid precursor protein processing. J Biol Chem 280:15413–15421

    Article  PubMed  CAS  Google Scholar 

  67. Bacskai BJ, Xia MQ, Strickland DK, Rebeck GW, Hyman BT (2000) The endocytic receptor protein LRP also mediates neuronal calcium signaling via N-methyl-D-aspartate receptors. Proc Natl Acad Sci USA 97:11551–11556

    Article  PubMed  CAS  Google Scholar 

  68. Beffert U, Durudas A, Weeber EJ, Stolt PC, Giehl KM, Sweatt JD, Hammer RE, Herz J (2006) Functional dissection of Reelin signaling by site-directed disruption of Disabled-1 adaptor binding to apolipoprotein E receptor 2: distinct roles in development and synaptic plasticity. J Neurosci 26:2041–2052

    Article  PubMed  CAS  Google Scholar 

  69. Qiu Z, Crutcher KA, Hyman BT, Rebeck GW (2003) ApoE isoforms affect neuronal N-methyl-D-aspartate calcium responses and toxicity via receptor-mediated processes. Neuroscience 122:291–303

    Article  PubMed  CAS  Google Scholar 

  70. Weeber EJ, Beffert U, Jones C, Christian JM, Forster E, Sweatt JD, Herz J (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277:39944–39952

    Article  PubMed  CAS  Google Scholar 

  71. Niethammer M, Kim E, Sheng M (1996) Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci 16:2157–2163

    PubMed  CAS  Google Scholar 

  72. Prange O, Wong TP, Gerrow K, Wang YT, El-Husseini A (2004) A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc Natl Acad Sci USA 101:13915–13920

    Article  PubMed  CAS  Google Scholar 

  73. Kim TW, Wu K, Xu JL, McAuliffe G, Tanzi RE, Wasco W, Black IB (1995) Selective localization of amyloid precursor-like protein 1 in the cerebral cortex postsynaptic density. Brain Res Mol Brain Res 32:36–44

    Article  PubMed  CAS  Google Scholar 

  74. Klar A, Baldassare M, Jessell TM (1992) F-spondin: a gene expressed at high levels in the floor plate encodes a secreted protein that promotes neural cell adhesion and neurite extension. Cell 69:95–110

    Article  PubMed  CAS  Google Scholar 

  75. Burstyn-Cohen T, Frumkin A, Xu YT, Scherer SS, Klar A (1998) Accumulation of F-spondin in injured peripheral nerve promotes the outgrowth of sensory axons. J Neurosci 18:8875–8885

    PubMed  CAS  Google Scholar 

  76. Burstyn-Cohen T, Tzarfaty V, Frumkin A, Feinstein Y, Stoeckli E, Klar A (1999) F-Spondin is required for accurate pathfinding of commissural axons at the floor plate. Neuron 23:233–246

    Article  PubMed  CAS  Google Scholar 

  77. Tzarfati-Majar V, Burstyn-Cohen T, Klar A (2001) F-spondin is a contact-repellent molecule for embryonic motor neurons. Proc Natl Acad Sci USA 98:4722–4727

    Article  PubMed  CAS  Google Scholar 

  78. Andrade N, Komnenovic V, Blake SM, Jossin Y, Howell B, Goffinet A, Schneider WJ, Nimpf J (2007) ApoER2/VLDL receptor and Dab1 in the rostral migratory stream function in postnatal neuronal migration independently of Reelin. Proc Natl Acad Sci USA 104:8508–8513

    Article  PubMed  CAS  Google Scholar 

  79. Schubert D, Klar A, Park M, Dargusch R, Fischer WH (2006) F-Spondin promotes nerve precursor differentiation. J Neurochem 96:444–453

    Article  PubMed  CAS  Google Scholar 

  80. Zisman S, Marom K, Avraham O, Rinsky-Halivni L, Gai U, Kligun G, Tzarfaty-Majar V, Suzuki T, Klar A (2007) Proteolysis and membrane capture of F-spondin generates combinatorial guidance cues from a single molecule. J Cell Biol 178:1237–1249

    Article  PubMed  CAS  Google Scholar 

  81. Hevner RF, Daza RA, Englund C, Kohtz J, Fink A (2004) Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward radial migration. Neuroscience 124:605–618

    Article  PubMed  CAS  Google Scholar 

  82. Qiu S, Zhao LF, Korwek KM, Weeber EJ (2006) Differential reelin-induced enhancement of NMDA and AMPA receptor activity in the adult hippocampus. J Neurosci 26:12943–12955

    Article  PubMed  CAS  Google Scholar 

  83. Qiu S, Weeber EJ (2007) Reelin signaling facilitates maturation of CA1 glutamatergic synapses. J Neurophysiol 97:2312–2321

    Article  PubMed  CAS  Google Scholar 

  84. Groc L, Choquet D, Stephenson FA, Verrier D, Manzoni OJ, Chavis P (2007) NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin. J Neurosci 27:10165–10175

    Article  PubMed  CAS  Google Scholar 

  85. Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, Cooper JA, Herz J (1999) Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481–489

    Article  PubMed  CAS  Google Scholar 

  86. Chin J, Massaro CM, Palop JJ, Thwin MT, Yu GQ, Bien-Ly N, Bender A, Mucke L (2007) Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer’s disease. J Neurosci 27:2727–2733

    Article  PubMed  CAS  Google Scholar 

  87. Hammond DN (1989) Neurite outgrowth and the amyloid protein precursor. Neurobiol Aging 10:575–576 (discussion 588–590)

    Article  PubMed  CAS  Google Scholar 

  88. Hoareau C, Borrell V, Soriano E, Krebs MO, Prochiantz A, Allinquant B (2008) Amyloid precursor protein cytoplasmic domain antagonizes reelin neurite outgrowth inhibition of hippocampal neurons. Neurobiol Aging 29:542–553

    Article  PubMed  CAS  Google Scholar 

  89. Niu S, Renfro A, Quattrocchi CC, Sheldon M, D’Arcangelo G (2004) Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 41:71–84

    Article  PubMed  CAS  Google Scholar 

  90. Ohsawa I, Takamura C, Kohsaka S (1997) The amino-terminal region of amyloid precursor protein is responsible for neurite outgrowth in rat neocortical explant culture. Biochem Biophys Res Commun 236:59–65

    Article  PubMed  CAS  Google Scholar 

  91. Qiu WQ, Ferreira A, Miller C, Koo EH, Selkoe DJ (1995) Cell-surface beta-amyloid precursor protein stimulates neurite outgrowth of hippocampal neurons in an isoform-dependent manner. J Neurosci 15:2157–2167

    PubMed  CAS  Google Scholar 

  92. Zheng H, Jiang M, Trumbauer ME, Hopkins R, Sirinathsinghji DJ, Stevens KA, Conner MW, Slunt HH, Sisodia SS, Chen HY, Van der Ploeg LH (1996) Mice deficient for the amyloid precursor protein gene. Ann N Y Acad Sci 777:421–426

    Article  PubMed  CAS  Google Scholar 

  93. Young-Pearse TL, Bai J, Chang R, Zheng JB, LoTurco JJ, Selkoe DJ (2007) A critical function for beta-amyloid precursor protein in neuronal migration revealed by in utero RNA interference. J Neurosci 27:14459–14469

    Article  PubMed  CAS  Google Scholar 

  94. Dawson GR, Seabrook GR, Zheng H, Smith DW, Graham S, O’Dowd G, Bowery BJ, Boyce S, Trumbauer ME, Chen HY et al (1999) Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience 90:1–13

    Article  PubMed  CAS  Google Scholar 

  95. Seabrook GR, Smith DW, Bowery BJ, Easter A, Reynolds T, Fitzjohn SM, Morton RA, Zheng H, Dawson GR, Sirinathsinghji DJ et al (1999) Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Neuropharmacology 38:349–359

    Article  PubMed  CAS  Google Scholar 

  96. Murphy G, Willenbrock F, Crabbe T, O’Shea M, Ward R, Atkinson S, O’Connell J, Docherty A (1994) Regulation of matrix metalloproteinase activity. Ann N Y Acad Sci 732:31–41

    Article  PubMed  CAS  Google Scholar 

  97. Hashimoto G, Aoki T, Nakamura H, Tanzawa K, Okada Y (2001) Inhibition of ADAMTS4 (aggrecanase-1) by tissue inhibitors of metalloproteinases (TIMP-1, 2, 3 and 4). FEBS Lett 494:192–195

    Article  PubMed  CAS  Google Scholar 

  98. Loechel F, Fox JW, Murphy G, Albrechtsen R, Wewer UM (2000) ADAM 12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3. Biochem Biophys Res Commun 278:511–515

    Article  PubMed  CAS  Google Scholar 

  99. Amour A, Knight CG, Webster A, Slocombe PM, Stephens PE, Knauper V, Docherty AJ, Murphy G (2000) The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett 473:275–279

    Article  PubMed  CAS  Google Scholar 

  100. Zou J, Zhu F, Liu J, Wang W, Zhang R, Garlisi CG, Liu YH, Wang S, Shah H, Wan Y, Umland SP (2004) Catalytic activity of human ADAM33. J Biol Chem 279:9818–9830

    Article  PubMed  CAS  Google Scholar 

  101. Allinson TM, Parkin ET, Condon TP, Schwager SL, Sturrock ED, Turner AJ, Hooper NM (2004) The role of ADAM10 and ADAM17 in the ectodomain shedding of angiotensin converting enzyme and the amyloid precursor protein. Eur J Biochem 271:2539–2547

    Article  PubMed  CAS  Google Scholar 

  102. Hoe HS, Cooper MJ, Burns MP, Lewis PA, van der Brug M, Chakraborty G, Cartagena CM, Pak DT, Cookson MR, Rebeck GW (2007) The metalloprotease inhibitor TIMP-3 regulates amyloid precursor protein and apolipoprotein E receptor proteolysis. J Neurosci 27:10895–10905

    Article  PubMed  CAS  Google Scholar 

  103. Burns MP, Vardanian L, Pajoohesh-Ganji A, Wang L, Cooper M, Harris DC, Duff K, Rebeck GW (2006) The effects of ABCA1 on cholesterol efflux and Abeta levels in vitro and in vivo. J Neurochem 98:792–800

    Article  PubMed  CAS  Google Scholar 

  104. Koldamova RP, Lefterov IM, Staufenbiel M, Wolfe D, Huang S, Glorioso JC, Walter M, Roth MG, Lazo JS (2005) The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer’s disease. J Biol Chem 280:4079–4088

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported NIH AG14473 (GWR), NIH AG030060 (GWR), and the Alzheimer’s Research Fund in memory of Bill and Marie Drach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. William Rebeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoe, HS., Rebeck, G.W. Regulated Proteolysis of APP and ApoE Receptors. Mol Neurobiol 37, 64–72 (2008). https://doi.org/10.1007/s12035-008-8017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-008-8017-0

Keywords

Navigation