Skip to main content

Advertisement

Log in

Ageing, Neuronal Connectivity and Brain Disorders: An Unsolved Ripple Effect

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cognitive decline associated with ageing and age-related disorders emerges as one of the greatest health challenges in the next decades. To date, the molecular mechanisms underlying the onset of neuronal physiological changes in the central nervous system remain unclear. Functional MRI and PET studies have indicated the decline in working memory performance in older adults. Similarly, age-related disorders, such as Alzheimer’s disease, are associated with changes in the prefontral cortex and related neural circuitry, which underlines the decline of integrative function between different brain regions. This is mainly attributed to the loss of synaptic connectivity, which is a feature commonly observed in neurodegenerative disorders. In humans, the morphological and functional changes in neurons, such as reduction of spine numbers and synaptic dysfunction, precede the first signs of cognitive decline and likely contribute to pathology progression. Thus, a new scenario emerges in which apparently unrelated diseases present common features, such as the remodelling of neuronal circuitries promoted by ageing. For many years, ageing was considered a process of slow deterioration triggered by accidental environmental factors. Conversely, it is now evident that ageing is a biological process tightly controlled by evolutionary highly conserved signalling pathways. Importantly, genetic mutations that enhance longevity significantly delay the loss of synaptic connectivity and, therefore, the onset of age-related brain disorders. Accordingly, tweaking ageing might be an attractive approach to prevent cognitive decline caused by age-related synaptic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204

    Article  PubMed  CAS  Google Scholar 

  2. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  PubMed  CAS  Google Scholar 

  3. Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL, Kockel L (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11:453–465

    Article  PubMed  CAS  Google Scholar 

  4. Partridge L, Gems D, Withers DJ (2005) Sex and death: what is the connection? Cell 120:461–472

    Article  PubMed  CAS  Google Scholar 

  5. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395:395–398

    Article  PubMed  CAS  Google Scholar 

  6. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    Article  PubMed  CAS  Google Scholar 

  7. Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391

    Article  PubMed  CAS  Google Scholar 

  8. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4:e24

    Article  PubMed  Google Scholar 

  9. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  PubMed  CAS  Google Scholar 

  10. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    PubMed  CAS  Google Scholar 

  11. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS ONE 5:e9979

    Article  PubMed  Google Scholar 

  12. Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, Ramesh V, Silva AJ (2008) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14:843–848

    Article  PubMed  CAS  Google Scholar 

  13. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

    Article  PubMed  CAS  Google Scholar 

  14. Shen W, Ganetzky B (2010) Nibbling away at synaptic development. Autophagy 6:168–169

    Article  PubMed  Google Scholar 

  15. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328:321–326

    Article  PubMed  CAS  Google Scholar 

  16. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  PubMed  CAS  Google Scholar 

  17. Libina N, Berman JR, Kenyon C (2003) Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115:489–502

    Article  PubMed  CAS  Google Scholar 

  18. Taguchi A, Wartschow LM, White MF (2007) Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317:369–372

    Article  PubMed  CAS  Google Scholar 

  19. Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187

    Article  PubMed  CAS  Google Scholar 

  20. Kojima T, Kamei H, Aizu T, Arai Y, Takayama M, Nakazawa S, Ebihara Y, Inagaki H, Masui Y, Gondo Y, Sakaki Y, Hirose N (2004) Association analysis between longevity in the Japanese population and polymorphic variants of genes involved in insulin and insulin-like growth factor 1 signaling pathways. Exp Gerontol 39:1595–1598

    Article  PubMed  CAS  Google Scholar 

  21. Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, Masaki KH, Willcox DC, Rodriguez B, Curb JD (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 105:13987–13992

    Article  PubMed  CAS  Google Scholar 

  22. Cohen E, Paulsson JF, Blinder P, Burstyn-Cohen T, Du D, Estepa G, Adame A, Pham HM, Holzenberger M, Kelly JW, Masliah E, Dillin A (2009) Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 139:1157–1169

    Article  PubMed  CAS  Google Scholar 

  23. Felkai S, Ewbank JJ, Lemieux J, Labbe JC, Brown GG, Hekimi S (1999) CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J 18:1783–1792

    Article  PubMed  CAS  Google Scholar 

  24. Lapointe J, Stepanyan Z, Bigras E, Hekimi S (2009) Reversal of the mitochondrial phenotype and slow development of oxidative biomarkers of aging in long-lived Mclk1+/− mice. J Biol Chem 284:20364–20374

    Article  PubMed  CAS  Google Scholar 

  25. Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298:2398–2401

    Article  PubMed  CAS  Google Scholar 

  26. Caldeira da Silva CC, Cerqueira FM, Barbosa LF, Medeiros MH, Kowaltowski AJ (2008) Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell 7:552–560

    Article  PubMed  CAS  Google Scholar 

  27. Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I, Spelbrink JN, Wibom R, Jacobs HT, Larsson NG (2005) Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci USA 102:17993–17998

    Article  PubMed  CAS  Google Scholar 

  28. Bartesaghi S, Betts-Henderson J, Cain K, Dinsdale D, Zhou X, Karlsson A, Salomoni P, Nicotera P (2010) Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration. Hum Mol Genet 19:1669–1677

    Article  PubMed  CAS  Google Scholar 

  29. Chakrabarti L, Zahra R, Jackson SM, Kazemi-Esfarjani P, Sopher BL, Mason AG, Toneff T, Ryu S, Shaffer S, Kansy JW, Eng J, Merrihew G, MacCoss MJ, Murphy A, Goodlett DR, Hook V, Bennett CL, Pallanck LJ, La Spada AR (2010) Mitochondrial dysfunction in NnaD mutant flies and Purkinje cell degeneration mice reveals a role for Nna proteins in neuronal bioenergetics. Neuron 66:835–847

    Article  PubMed  CAS  Google Scholar 

  30. Mullen RJ, Eicher EM, Sidman RL (1976) Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci USA 73:208–212

    Article  PubMed  CAS  Google Scholar 

  31. Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT, Ackerman SL (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419:367–374

    Article  PubMed  CAS  Google Scholar 

  32. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Article  PubMed  CAS  Google Scholar 

  33. Gan L, Mucke L (2008) Paths of convergence: sirtuins in aging and neurodegeneration. Neuron 58:10–14

    Article  PubMed  CAS  Google Scholar 

  34. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    Article  PubMed  CAS  Google Scholar 

  35. Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, Hartlerode A, Stegmuller J, Hafner A, Loerch P, Wright SM, Mills KD, Bonni A, Yankner BA, Scully R, Prolla TA, Alt FW, Sinclair DA (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135:907–918

    Article  PubMed  CAS  Google Scholar 

  36. Sinclair DA, Lin SJ, Guarente L (2006) Life-span extension in yeast. Science 312:195–197, author reply 195–197

    Article  PubMed  CAS  Google Scholar 

  37. Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS, Maro GS, Han S, Banko MR, Gozani O, Brunet A (2010) Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466:383–387

    Article  PubMed  CAS  Google Scholar 

  38. Jacobs B, Driscoll L, Schall M (1997) Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol 386:661–680

    Article  PubMed  CAS  Google Scholar 

  39. Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13:950–961

    Article  PubMed  Google Scholar 

  40. Dumitriu D, Hao J, Hara Y, Kaufmann J, Janssen WG, Lou W, Rapp PR, Morrison JH (2010) Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 30:7507–7515

    Article  PubMed  CAS  Google Scholar 

  41. Bagni C, Greenough WT (2005) From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci 6:376–387

    Article  PubMed  CAS  Google Scholar 

  42. Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384

    Article  PubMed  CAS  Google Scholar 

  43. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  PubMed  CAS  Google Scholar 

  44. Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner PF, Busch CJ, Kane C, Hubel K, Dekker F, Hedberg C, Rengarajan B, Drepper C, Waldmann H, Kauppinen S, Greenberg ME, Draguhn A, Rehmsmeier M, Martinez J, Schratt GM (2009) A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 11:705–716

    Article  PubMed  CAS  Google Scholar 

  45. Noren Hooten N, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman AB, Evans MK (2010) microRNA expression patterns reveal differential expression of target genes with age. PLoS ONE 5:e10724

    Article  PubMed  Google Scholar 

  46. Boehm M, Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310:1954–1957

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors want to thank Prof. di Monte, Dr. Troulinaki and Miss Belau for their precious comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniele Bano or Pierluigi Nicotera.

Additional information

We would like to dedicate this review to Prof Rita Levi-Montalcini in recognition of her fundamental contribution to science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bano, D., Agostini, M., Melino, G. et al. Ageing, Neuronal Connectivity and Brain Disorders: An Unsolved Ripple Effect. Mol Neurobiol 43, 124–130 (2011). https://doi.org/10.1007/s12035-011-8164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-011-8164-6

Keywords

Navigation