Skip to main content

Advertisement

Log in

The Role of MAPT in Neurodegenerative Diseases: Genetics, Mechanisms and Therapy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Microtubule-associated protein tau (MAPT) is a gene responsible for encoding tau protein, which is tightly implicated in keeping the function of microtubules and axonal transport. Hyperphosphorylated tau protein participates in the formation of neurofibrillary tangles (NFTs), which characterize many neurodegenerative disorders termed tauopathies. Genome-wide association studies (GWAS) have demonstrated numerous single nucleotide polymorphisms (SNPs) located in MAPT associated with various neurodegenerative diseases. Thus, it has been presumed that MAPT plays a crucial role in pathogenesis of neurodegeneration via affecting the structure and function of tau. Here, we review the advanced studies to summarize the biochemical properties of MAPT and its encoded protein, as well as the genetics and epigenetics of MAPT in neurodegeneration. Finally, given the potential mechanisms of MAPT to neurodegeneration pathogenesis, targeting MAPT and tau might present significant treatments of MAPT mutation-related neurodegeneration. Affirmatively, the identification of MAPT is extremely beneficial for improving our understanding of the pathogenesis of various neurodegenerative diseases and developing the mechanism-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ittner LM, Gotz J (2011) Amyloid-beta and tau—a toxic pas de deux in Alzheimer's disease. Nat Rev Neurosci 12(2):65–72. doi:10.1038/nrn2967

    Article  CAS  PubMed  Google Scholar 

  2. Yu JT, Tan L, Hardy J (2014) Apolipoprotein E in Alzheimer's disease: an update. Annu Rev Neurosci 37:79–100. doi:10.1146/annurev-neuro-071013-014300

    Article  CAS  PubMed  Google Scholar 

  3. Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12(6):609–622. doi:10.1016/s1474-4422(13)70090-5

    Article  CAS  PubMed  Google Scholar 

  4. Spillantini MG, Bird TD, Ghetti B (1998) Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol 8(2):387–402

    Article  CAS  PubMed  Google Scholar 

  5. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S et al (1998) Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393(6686):702–705. doi:10.1038/31508

    Article  CAS  PubMed  Google Scholar 

  6. Rossi G, Bastone A, Piccoli E, Morbin M, Mazzoleni G, Fugnanesi V, Beeg M, Del Favero E et al (2014) Different mutations at V363 MAPT codon are associated with atypical clinical phenotypes and show unusual structural and functional features. Neurobiol Aging 35(2):408–417. doi:10.1016/j.neurobiolaging.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  7. Di Fonzo A, Ronchi D, Gallia F, Cribiu FM, Trezzi I, Vetro A, Della Mina E, Limongelli I et al (2014) Lower motor neuron disease with respiratory failure caused by a novel MAPT mutation. Neurology 82(22):1990–1998. doi:10.1212/wnl.0000000000000476

    Article  PubMed  CAS  Google Scholar 

  8. Iyer A, Lapointe NE, Zielke K, Berdynski M, Guzman E, Barczak A, Chodakowska-Zebrowska M, Barcikowska M et al (2013) A novel MAPT mutation, G55R, in a frontotemporal dementia patient leads to altered Tau function. PLoS One 8(9), e76409. doi:10.1371/journal.pone.0076409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coppola G, Chinnathambi S, Lee JJ, Dombroski BA, Baker MC, Soto-Ortolaza AI, Lee SE, Klein E et al (2012) Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Hum Mol Genet 21(15):3500–3512. doi:10.1093/hmg/dds161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ling H, Kara E, Bandopadhyay R, Hardy J, Holton J, Xiromerisiou G, Lees A, Houlden H et al (2013) TDP-43 pathology in a patient carrying G2019S LRRK2 mutation and a novel p.Q124E MAPT. Neurobiol Aging 34(12):2889. doi:10.1016/j.neurobiolaging.2013.04.011, e2885-2889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Liang Y, Gordon E, Rohrer J, Downey L, de Silva R, Jager HR, Nicholas J, Modat M et al (2014) A cognitive chameleon: lessons from a novel MAPT mutation case. Neurocase 20(6):684–694. doi:10.1080/13554794.2013.826697

    Article  PubMed  Google Scholar 

  12. Simon-Sanchez J, van Hilten JJ, van de Warrenburg B, Post B, Berendse HW, Arepalli S, Hernandez DG, de Bie RM et al (2011) Genome-wide association study confirms extant PD risk loci among the Dutch. Eur J Hum Genet 19(6):655–661. doi:10.1038/ejhg.2010.254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Edwards TL, Scott WK, Almonte C, Burt A, Powell EH, Beecham GW, Wang L, Zuchner S et al (2010) Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 74(2):97–109. doi:10.1111/j.1469-1809.2009.00560.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C, Lichtner P et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 41(12):1308–1312. doi:10.1038/ng.487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, Kawaguchi T, Tsunoda T et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet 41(12):1303–1307. doi:10.1038/ng.485

    Article  CAS  PubMed  Google Scholar 

  16. Wolfe MS (2012) The role of tau in neurodegenerative diseases and its potential as a therapeutic target. Scientifica 2012:796024. doi:10.6064/2012/796024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9(13):4225–4230

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y, Vosseller K, Vocadlo DJ (2012) Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol 8(4):393–399. doi:10.1038/nchembio.797

    Article  CAS  PubMed  Google Scholar 

  19. Borghgraef P, Menuet C, Theunis C, Louis JV, Devijver H, Maurin H, Smet-Nocca C, Lippens G et al (2013) Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice. PLoS One 8(12), e84442. doi:10.1371/journal.pone.0084442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Graham DL, Gray AJ, Joyce JA, Yu D, O'Moore J, Carlson GA, Shearman MS, Dellovade TL et al (2014) Increased O-GlcNAcylation reduces pathological tau without affecting its normal phosphorylation in a mouse model of tauopathy. Neuropharmacology 79:307–313. doi:10.1016/j.neuropharm.2013.11.025

    Article  CAS  PubMed  Google Scholar 

  21. Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y et al (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966. doi:10.1016/j.neuron.2010.08.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sultan A, Nesslany F, Violet M, Begard S, Loyens A, Talahari S, Mansuroglu Z, Marzin D et al (2011) Nuclear tau, a key player in neuronal DNA protection. J Biol Chem 286(6):4566–4575. doi:10.1074/jbc.M110.199976

    Article  CAS  PubMed  Google Scholar 

  23. Reddy PH (2011) Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer's disease. Brain Res 1415:136–148. doi:10.1016/j.brainres.2011.07.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Villa C, Ghezzi L, Pietroboni AM, Fenoglio C, Cortini F, Serpente M, Cantoni C, Ridolfi E et al (2011) A novel MAPT mutation associated with the clinical phenotype of progressive nonfluent aphasia. J Alzheimers Dis 26(1):19–26. doi:10.3233/jad-2011-102124

    CAS  PubMed  Google Scholar 

  25. Magnani E, Fan J, Gasparini L, Golding M, Williams M, Schiavo G, Goedert M, Amos LA et al (2007) Interaction of tau protein with the dynactin complex. EMBO J 26(21):4546–4554. doi:10.1038/sj.emboj.7601878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ronnback A, Nennesmo I, Tuominen H, Grueninger F, Viitanen M, Graff C (2014) Neuropathological characterization of two siblings carrying the MAPT S305S mutation demonstrates features resembling argyrophilic grain disease. Acta Neuropathol 127(2):297–298. doi:10.1007/s00401-013-1229-z

    Article  PubMed  Google Scholar 

  27. Rossi G, Conconi D, Panzeri E, Paoletta L, Piccoli E, Ferretti MG, Mangieri M, Ruggerone M et al (2014) Mutations in MAPT give rise to aneuploidy in animal models of tauopathy. Neurogenetics 15(1):31–40. doi:10.1007/s10048-013-0380-y

    Article  CAS  PubMed  Google Scholar 

  28. Alonso Adel C, Mederlyova A, Novak M, Grundke-Iqbal I, Iqbal K (2004) Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J Biol Chem 279(33):34873–34881. doi:10.1074/jbc.M405131200

    Article  PubMed  CAS  Google Scholar 

  29. Deramecourt V, Lebert F, Maurage CA, Fernandez-Gomez FJ, Dujardin S, Colin M, Sergeant N, Buee-Scherrer V et al (2012) Clinical, neuropathological, and biochemical characterization of the novel tau mutation P332S. J Alzheimers Dis 31(4):741–749. doi:10.3233/jad-2012-120160

    CAS  PubMed  Google Scholar 

  30. Ishizuka T, Nakamura M, Ichiba M, Sano A (2011) Familial semantic dementia with P301L mutation in the Tau gene. Dement Geriatr Cogn Disord 31(5):334–340. doi:10.1159/000328412

    Article  CAS  PubMed  Google Scholar 

  31. Chaunu MP, Deramecourt V, Buee-Scherrer V, Le Ber I, Brice A, Ehrle N, El Hachimi K, Pluot M et al (2013) Juvenile frontotemporal dementia with parkinsonism associated with tau mutation G389R. J Alzheimers Dis 37(4):769–776. doi:10.3233/jad-130413

    CAS  PubMed  Google Scholar 

  32. Kouri N, Carlomagno Y, Baker M, Liesinger AM, Caselli RJ, Wszolek ZK, Petrucelli L, Boeve BF et al (2014) Novel mutation in MAPT exon 13 (p.N410H) causes corticobasal degeneration. Acta Neuropathol 127(2):271–282. doi:10.1007/s00401-013-1193-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rohrer JD, Paviour D, Vandrovcova J, Hodges J, de Silva R, Rossor MN (2011) Novel L284R MAPT mutation in a family with an autosomal dominant progressive supranuclear palsy syndrome. Neurodegener Dis 8(3):149–152. doi:10.1159/000319454

    Article  CAS  PubMed  Google Scholar 

  34. Kovacs GG, Pittman A, Revesz T, Luk C, Lees A, Kiss E, Tariska P, Laszlo L et al (2008) MAPT S305I mutation: implications for argyrophilic grain disease. Acta Neuropathol 116(1):103–118. doi:10.1007/s00401-007-0322-6

    Article  CAS  PubMed  Google Scholar 

  35. Sharkey FH, Morrison N, Murray R, Iremonger J, Stephen J, Maher E, Tolmie J, Jackson AP (2009) 17q21.31 microdeletion syndrome: further expanding the clinical phenotype. Cytogenet Genome Res 127(1):61–66. doi:10.1159/000279260

    Article  CAS  PubMed  Google Scholar 

  36. Iwata A, Nagata K, Hatsuta H, Takuma H, Bundo M, Iwamoto K, Tamaoka A, Murayama S et al (2014) Altered CpG methylation in sporadic Alzheimer's disease is associated with APP and MAPT dysregulation. Hum Mol Genet 23(3):648–656. doi:10.1093/hmg/ddt451

    Article  CAS  PubMed  Google Scholar 

  37. Coupland KG, Mellick GD, Silburn PA, Mather K, Armstrong NJ, Sachdev PS, Brodaty H, Huang Y et al (2014) DNA methylation of the MAPT gene in Parkinson's disease cohorts and modulation by vitamin E in vitro. Mov Disord 29(13):1606–1614. doi:10.1002/mds.25784

    Article  CAS  PubMed  Google Scholar 

  38. Delay C, Mandemakers W, Hebert SS (2012) MicroRNAs in Alzheimer's disease. Neurobiol Dis 46(2):285–290. doi:10.1016/j.nbd.2012.01.003

    Article  CAS  PubMed  Google Scholar 

  39. Li Y, Chen JA, Sears RL, Gao F, Klein ED, Karydas A, Geschwind MD, Rosen HJ et al (2014) An epigenetic signature in peripheral blood associated with the haplotype on 17q21.31, a risk factor for neurodegenerative tauopathy. PLoS Genet 10(3), e1004211. doi:10.1371/journal.pgen.1004211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Abe M, Bonini NM (2013) MicroRNAs and neurodegeneration: role and impact. Trends Cell Biol 23(1):30–36. doi:10.1016/j.tcb.2012.08.013

    Article  CAS  PubMed  Google Scholar 

  41. Tan L, Yu JT, Tan L (2014) Causes and Consequences of MicroRNA Dysregulation in Neurodegenerative Diseases. Molecular neurobiology. doi:10.1007/s12035-014-8803-9.

  42. Santa-Maria I, Alaniz ME, Renwick N, Cela C, Fulga TA, Van Vactor D, Tuschl T, Clark LN et al (2015) Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. J Clin Invest 125(2):681–686. doi:10.1172/JCI78421

    Article  PubMed  PubMed Central  Google Scholar 

  43. Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118(1):53–69. doi:10.1007/s00401-009-0486-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT (2010) Caspase activation precedes and leads to tangles. Nature 464(7292):1201–1204. doi:10.1038/nature08890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wang ZX, Tan L, Yu JT (2015) Axonal transport defects in Alzheimer's disease. Mol Neurobiol 51(3):1309–1321. doi:10.1007/s12035-014-8810-x

    Article  CAS  PubMed  Google Scholar 

  46. Iovino M, Agathou S, Gonzalez-Rueda A, Del Castillo Velasco-Herrera M, Borroni B, Alberici A, Lynch T, O'Dowd S, et al. (2015) Early maturation and distinct tau pathology in induced pluripotent stem cell-derived neurons from patients with MAPT mutations. Brain : a journal of neurology. doi: 10.1093/brain/awv222

  47. Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP (2013) Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14(4):389–394. doi:10.1038/embor.2013.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Braak H, Del Tredici K (2011) Alzheimer's pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol 121(5):589–595. doi:10.1007/s00401-011-0825-z

    Article  CAS  PubMed  Google Scholar 

  49. Clavaguera F, Lavenir I, Falcon B, Frank S, Goedert M, Tolnay M (2013) "Prion-like" templated misfolding in tauopathies. Brain Pathol 23(3):342–349. doi:10.1111/bpa.12044

    Article  CAS  PubMed  Google Scholar 

  50. Goedert M, Falcon B, Clavaguera F, Tolnay M (2014) Prion-like mechanisms in the pathogenesis of tauopathies and synucleinopathies. Curr Neurol Neurosci Rep 14(11):495. doi:10.1007/s11910-014-0495-z

    Article  PubMed  CAS  Google Scholar 

  51. Mohamed NV, Herrou T, Plouffe V, Piperno N, Leclerc N (2013) Spreading of tau pathology in Alzheimer's disease by cell-to-cell transmission. Eur J Neurosci 37(12):1939–1948. doi:10.1111/ejn.12229

    Article  PubMed  Google Scholar 

  52. Yamada K, Holth JK, Liao F, Stewart FR, Mahan TE, Jiang H, Cirrito JR, Patel TK et al (2014) Neuronal activity regulates extracellular tau in vivo. J Exp Med 211(3):387–393. doi:10.1084/jem.20131685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gomez-Ramos A, Diaz-Hernandez M, Rubio A, Miras-Portugal MT, Avila J (2008) Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Mol Cell Neurosci 37(4):673–681. doi:10.1016/j.mcn.2007.12.010

    Article  CAS  PubMed  Google Scholar 

  54. Maccioni RB, Farias G, Morales I, Navarrete L (2010) The revitalized tau hypothesis on Alzheimer's disease. Arch Med Res 41(3):226–231. doi:10.1016/j.arcmed.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  55. Li Y, Tan MS, Jiang T, Tan L (2014) Microglia in Alzheimer's disease. BioMed Res Int 2014:437483. doi:10.1155/2014/437483

    PubMed  PubMed Central  Google Scholar 

  56. Kopeikina KJ, Carlson GA, Pitstick R, Ludvigson AE, Peters A, Luebke JI, Koffie RM, Frosch MP et al (2011) Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer's disease brain. Am J Pathol 179(4):2071–2082. doi:10.1016/j.ajpath.2011.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Manczak M, Reddy PH (2012) Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer's disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum Mol Genet 21(11):2538–2547. doi:10.1093/hmg/dds072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. DuBoff B, Gotz J, Feany MB (2012) Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron 75(4):618–632. doi:10.1016/j.neuron.2012.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Quintanilla RA, Dolan PJ, Jin YN, Johnson GV (2012) Truncated tau and Abeta cooperatively impair mitochondria in primary neurons. Neurobiology of aging 33 (3):619 e625-635. doi:10.1016/j.neurobiolaging.2011.02.007

  60. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R (2011) Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener 6:39. doi:10.1186/1750-1326-6-39

    Article  PubMed  PubMed Central  Google Scholar 

  61. Melov S, Adlard PA, Morten K, Johnson F, Golden TR, Hinerfeld D, Schilling B, Mavros C et al (2007) Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS One 2(6), e536. doi:10.1371/journal.pone.0000536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Verri M, Pastoris O, Dossena M, Aquilani R, Guerriero F, Cuzzoni G, Venturini L, Ricevuti G et al (2012) Mitochondrial alterations, oxidative stress and neuroinflammation in Alzheimer's disease. Int J Immunopathol Pharmacol 25(2):345–353

    CAS  PubMed  Google Scholar 

  63. Wang ZX, Tan L, Liu J, Yu JT (2015) The Essential Role of Soluble Abeta Oligomers in Alzheimer's Disease. Molecular neurobiology. doi:10.1007/s12035-015-9143-0

  64. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wolfing H, Chieng BC et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 142(3):387–397. doi:10.1016/j.cell.2010.06.036

    Article  CAS  PubMed  Google Scholar 

  65. Salter MW, Kalia LV (2004) Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5(4):317–328. doi:10.1038/nrn1368

    Article  CAS  PubMed  Google Scholar 

  66. Bhaskar K, Yen SH, Lee G (2005) Disease-related modifications in tau affect the interaction between Fyn and Tau. J Biol Chem 280(42):35119–35125. doi:10.1074/jbc.M505895200

    Article  CAS  PubMed  Google Scholar 

  67. Quintanilla RA, von Bernhardi R, Godoy JA, Inestrosa NC, Johnson GV (2014) Phosphorylated tau potentiates Abeta-induced mitochondrial damage in mature neurons. Neurobiol Dis 71:260–269. doi:10.1016/j.nbd.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  68. Lagunes T, Herrera-Rivero M, Hernandez-Aguilar ME, Aranda-Abreu GE (2014) Abeta(1–42) induces abnormal alternative splicing of tau exons 2/3 in NGF-induced PC12 cells. An Acad Bras Cienc 86(4):1927–1934. doi:10.1590/0001-3765201420130333

    Article  PubMed  Google Scholar 

  69. Oliveira JM, Henriques AG, Martins F, Rebelo S, da Cruz ESOA (2015) Amyloid-beta Modulates Both AbetaPP and Tau Phosphorylation. Journal of Alzheimer's disease : JAD. doi:10.3233/JAD-142664

  70. Xu H, Rosler TW, Carlsson T, de Andrade A, Fiala O, Hollerhage M, Oertel WH, Goedert M et al (2014) Tau Silencing by siRNA in the P301S Mouse model of Tauopathy. Curr Gene Ther 14(5):343–51

    Article  CAS  PubMed  Google Scholar 

  71. DeVos SL, Miller TM (2013) Antisense oligonucleotides: treating neurodegeneration at the level of RNA. Neurotherapeutics 10(3):486–497. doi:10.1007/s13311-013-0194-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sud R, Geller ET, Schellenberg GD (2014) Antisense-mediated exon skipping decreases Tau protein expression: a potential therapy for Tauopathies. Molecular Therapy Nucleic Acids 3, e180. doi:10.1038/mtna.2014.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP (2015) Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol 55:353–371. doi:10.1146/annurev-pharmtox-010814-124332

    Article  CAS  PubMed  Google Scholar 

  74. Tortosa E, Santa-Maria I, Moreno F, Lim F, Perez M, Avila J (2009) Binding of Hsp90 to tau promotes a conformational change and aggregation of tau protein. J Alzheimers Dis 17(2):319–325. doi:10.3233/JAD-2009-1049

    CAS  PubMed  Google Scholar 

  75. Congdon EE, Wu JW, Myeku N, Figueroa YH, Herman M, Marinec PS, Gestwicki JE, Dickey CA et al (2012) Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8(4):609–622. doi:10.4161/auto.19048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shimada K, Motoi Y, Ishiguro K, Kambe T, Matsumoto SE, Itaya M, Kunichika M, Mori H et al (2012) Long-term oral lithium treatment attenuates motor disturbance in tauopathy model mice: implications of autophagy promotion. Neurobiol Dis 46(1):101–108. doi:10.1016/j.nbd.2011.12.050

    Article  CAS  PubMed  Google Scholar 

  77. Engel T, Goni-Oliver P, Lucas JJ, Avila J, Hernandez F (2006) Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 99(6):1445–1455. doi:10.1111/j.1471-4159.2006.04139.x

    Article  CAS  PubMed  Google Scholar 

  78. Hampel H, Ewers M, Burger K, Annas P, Mortberg A, Bogstedt A, Frolich L, Schroder J et al (2009) Lithium trial in Alzheimer's disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry 70(6):922–931

    Article  CAS  PubMed  Google Scholar 

  79. Sereno L, Coma M, Rodriguez M, Sanchez-Ferrer P, Sanchez MB, Gich I, Agullo JM, Perez M et al (2009) A novel GSK-3beta inhibitor reduces Alzheimer's pathology and rescues neuronal loss in vivo. Neurobiol Dis 35(3):359–367. doi:10.1016/j.nbd.2009.05.025

    Article  CAS  PubMed  Google Scholar 

  80. Lovestone S, Boada M, Dubois B, Hull M, Rinne JO, Huppertz HJ, Calero M, Andres MV et al (2015) A phase II trial of Tideglusib in Alzheimer's disease. J Alzheimers Dis 45(1):75–88. doi:10.3233/JAD-141959

    CAS  PubMed  Google Scholar 

  81. Tolosa E, Litvan I, Hoglinger GU, Burn D, Lees A, Andres MV, Gomez-Carrillo B, Leon T et al (2014) A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord 29(4):470–478. doi:10.1002/mds.25824

    Article  CAS  PubMed  Google Scholar 

  82. Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402(6762):615–622. doi:10.1038/45159

    Article  CAS  PubMed  Google Scholar 

  83. Piedrahita D, Hernandez I, Lopez-Tobon A, Fedorov D, Obara B, Manjunath BS, Boudreau RL, Davidson B et al (2010) Silencing of CDK5 reduces neurofibrillary tangles in transgenic alzheimer's mice. J Neurosci 30(42):13966–13976. doi:10.1523/JNEUROSCI.3637-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cho DH, Lee EJ, Kwon KJ, Shin CY, Song KH, Park JH, Jo I, Han SH (2013) Troglitazone, a thiazolidinedione, decreases tau phosphorylation through the inhibition of cyclin-dependent kinase 5 activity in SH-SY5Y neuroblastoma cells and primary neurons. J Neurochem 126(5):685–695. doi:10.1111/jnc.12264

    Article  CAS  PubMed  Google Scholar 

  85. Chu J, Pratico D (2013) 5-Lipoxygenase pharmacological blockade decreases tau phosphorylation in vivo: involvement of the cyclin-dependent kinase-5. Neurobiol Aging 34(6):1549–1554. doi:10.1016/j.neurobiolaging.2012.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sundaram JR, Poore CP, Sulaimee NH, Pareek T, Asad AB, Rajkumar R, Cheong WF, Wenk MR et al (2013) Specific inhibition of p25/Cdk5 activity by the Cdk5 inhibitory peptide reduces neurodegeneration in vivo. J Neurosci 33(1):334–343. doi:10.1523/JNEUROSCI.3593-12.2013

    Article  CAS  PubMed  Google Scholar 

  87. Rao MV, McBrayer MK, Campbell J, Kumar A, Hashim A, Sershen H, Stavrides PH, Ohno M et al (2014) Specific calpain inhibition by calpastatin prevents tauopathy and neurodegeneration and restores normal lifespan in tau P301L mice. J Neurosci 34(28):9222–9234. doi:10.1523/jneurosci.1132-14.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wu J, Tolstykh T, Lee J, Boyd K, Stock JB, Broach JR (2000) Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo. EMBO J 19(21):5672–5681. doi:10.1093/emboj/19.21.5672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li W, Jiang M, Xiao Y, Zhang X, Cui S, Huang G (2015) Folic acid inhibits tau phosphorylation through regulation of PP2A methylation in SH-SY5Y cells. J Nutr Health Aging 19(2):123–129. doi:10.1007/s12603-014-0514-4

    Article  CAS  PubMed  Google Scholar 

  90. Yang CC, Kuai XX, Li YL, Zhang L, Yu JC, Li L, Zhang L (2013) Cornel Iridoid glycoside attenuates Tau Hyperphosphorylation by inhibition of PP2A Demethylation. Evidence-based Complementary Alternative Med: eCAM 2013:108486. doi:10.1155/2013/108486

    PubMed Central  Google Scholar 

  91. Chohan MO, Khatoon S, Iqbal IG, Iqbal K (2006) Involvement of I2PP2A in the abnormal hyperphosphorylation of tau and its reversal by Memantine. FEBS Lett 580(16):3973–3979. doi:10.1016/j.febslet.2006.06.021

    Article  CAS  PubMed  Google Scholar 

  92. Martinez-Coria H, Green KN, Billings LM, Kitazawa M, Albrecht M, Rammes G, Parsons CG, Gupta S et al (2010) Memantine improves cognition and reduces Alzheimer's-like neuropathology in transgenic mice. Am J Pathol 176(2):870–880. doi:10.2353/ajpath.2010.090452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McShane R, Areosa Sastre A, Minakaran N (2006) Memantine for dementia. Cochrane Database Systematic Rev 2:CD003154. doi:10.1002/14651858.CD003154.pub5

    Google Scholar 

  94. van Eersel J, Ke YD, Liu X, Delerue F, Kril JJ, Gotz J, Ittner LM (2010) Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models. Proc Natl Acad Sci U S A 107(31):13888–13893. doi:10.1073/pnas.1009038107

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cheng XS, Zhao KP, Jiang X, Du LL, Li XH, Ma ZW, Yao J, Luo Y et al (2013) Nmnat2 attenuates Tau phosphorylation through activation of PP2A. J Alzheimers Dis 36(1):185–195. doi:10.3233/JAD-122173

    CAS  PubMed  Google Scholar 

  96. Chang E, Honson NS, Bandyopadhyay B, Funk KE, Jensen JR, Kim S, Naphade S, Kuret J (2009) Modulation and detection of tau aggregation with small-molecule ligands. Curr Alzheimer Res 6(5):409–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Taniguchi S, Suzuki N, Masuda M, Hisanaga S, Iwatsubo T, Goedert M, Hasegawa M (2005) Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J Biol Chem 280(9):7614–7623. doi:10.1074/jbc.M408714200

    Article  CAS  PubMed  Google Scholar 

  98. Daccache A, Lion C, Sibille N, Gerard M, Slomianny C, Lippens G, Cotelle P (2011) Oleuropein and derivatives from olives as Tau aggregation inhibitors. Neurochem Int 58(6):700–707. doi:10.1016/j.neuint.2011.02.010

    Article  CAS  PubMed  Google Scholar 

  99. Wischik CM, Edwards PC, Lai RY, Roth M, Harrington CR (1996) Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci U S A 93(20):11213–11218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. van Bebber F, Paquet D, Hruscha A, Schmid B, Haass C (2010) Methylene blue fails to inhibit Tau and polyglutamine protein dependent toxicity in zebrafish. Neurobiol Dis 39(3):265–271. doi:10.1016/j.nbd.2010.03.023

    Article  PubMed  CAS  Google Scholar 

  101. Spires-Jones TL, Friedman T, Pitstick R, Polydoro M, Roe A, Carlson GA, Hyman BT (2014) Methylene blue does not reverse existing neurofibrillary tangle pathology in the rTg4510 mouse model of tauopathy. Neurosci Lett 562:63–68. doi:10.1016/j.neulet.2014.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wischik C, Staff R (2009) Challenges in the conduct of disease-modifying trials in AD: practical experience from a phase 2 trial of Tau-aggregation inhibitor therapy. J Nutr Health Aging 13(4):367–369

    Article  CAS  PubMed  Google Scholar 

  103. Bi M, Ittner A, Ke YD, Gotz J, Ittner LM (2011) Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS One 6(12), e26860. doi:10.1371/journal.pone.0026860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chai X, Wu S, Murray TK, Kinley R, Cella CV, Sims H, Buckner N, Hanmer J et al (2011) Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression. J Biol Chem 286(39):34457–34467. doi:10.1074/jbc.M111.229633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Troquier L, Caillierez R, Burnouf S, Fernandez-Gomez FJ, Grosjean ME, Zommer N, Sergeant N, Schraen-Maschke S et al (2012) Targeting phospho-Ser422 by active Tau immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Curr Alzheimer Res 9(4):397–405

    Article  PubMed  PubMed Central  Google Scholar 

  106. Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27(34):9115–9129. doi:10.1523/JNEUROSCI.2361-07.2007

    Article  CAS  PubMed  Google Scholar 

  107. Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM (2011) Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem 118(4):658–667. doi:10.1111/j.1471-4159.2011.07337.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Boutajangout A, Quartermain D, Sigurdsson EM (2010) Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci 30(49):16559–16566. doi:10.1523/JNEUROSCI.4363-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Boimel M, Grigoriadis N, Lourbopoulos A, Haber E, Abramsky O, Rosenmann H (2010) Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp Neurol 224(2):472–485. doi:10.1016/j.expneurol.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  110. Gu J, Congdon EE, Sigurdsson EM (2013) Two novel Tau antibodies targeting the 396/404 region are primarily taken up by neurons and reduce Tau protein pathology. J Biol Chem 288(46):33081–33095. doi:10.1074/jbc.M113.494922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Krishnamurthy PK, Deng Y, Sigurdsson EM (2011) Mechanistic studies of antibody-mediated clearance of Tau Aggregates using an ex vivo brain slice model. Frontiers Psychiatry 2:59. doi:10.3389/fpsyt.2011.00059

    Article  CAS  Google Scholar 

  112. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53(3):337–351. doi:10.1016/j.neuron.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  113. Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN et al (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 95(18):10896–10901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nash KR, Lee DC, Hunt JB Jr, Morganti JM, Selenica ML, Moran P, Reid P, Brownlow M et al (2013) Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy. Neurobiol Aging 34(6):1540–1548. doi:10.1016/j.neurobiolaging.2012.12.011

    Article  CAS  PubMed  Google Scholar 

  115. Yoshiyama Y, Kojima A, Ishikawa C, Arai K (2010) Anti-inflammatory action of donepezil ameliorates tau pathology, synaptic loss, and neurodegeneration in a tauopathy mouse model. J Alzheimers Dis 22(1):295–306. doi:10.3233/JAD-2010-100681

    CAS  PubMed  Google Scholar 

  116. Cai Z, Yan Y, Wang Y (2013) Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder. Clin Interv Aging 8:1089–1095. doi:10.2147/CIA.S46536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kurata T, Lukic V, Kozuki M, Wada D, Miyazaki K, Morimoto N, Ohta Y, Deguchi K et al (2014) Telmisartan reduces progressive accumulation of cellular amyloid beta and phosphorylated tau with inflammatory responses in aged spontaneously hypertensive stroke resistant rat. J Stroke Cerebrovasc Dis 23(10):2580–2590. doi:10.1016/j.jstrokecerebrovasdis.2014.05.023

    Article  PubMed  Google Scholar 

  118. Brunden KR, Zhang B, Carroll J, Yao Y, Potuzak JS, Hogan AM, Iba M, James MJ et al (2010) Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci 30(41):13861–13866. doi:10.1523/JNEUROSCI.3059-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang B, Carroll J, Trojanowski JQ, Yao Y, Iba M, Potuzak JS, Hogan AM, Xie SX et al (2012) The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci 32(11):3601–3611. doi:10.1523/JNEUROSCI.4922-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Barten DM, Fanara P, Andorfer C, Hoque N, Wong PY, Husted KH, Cadelina GW, Decarr LB et al (2012) Hyperdynamic microtubules, cognitive deficits, and pathology are improved in tau transgenic mice with low doses of the microtubule-stabilizing agent BMS-241027. J Neurosci 32(21):7137–7145. doi:10.1523/JNEUROSCI.0188-12.2012

    Article  CAS  PubMed  Google Scholar 

  121. Gozes I (2011) NAP (davunetide) provides functional and structural neuroprotection. Curr Pharm Des 17(10):1040–1044

    Article  CAS  PubMed  Google Scholar 

  122. Shiryaev N, Jouroukhin Y, Giladi E, Polyzoidou E, Grigoriadis NC, Rosenmann H, Gozes I (2009) NAP protects memory, increases soluble tau and reduces tau hyperphosphorylation in a tauopathy model. Neurobiol Dis 34(2):381–388. doi:10.1016/j.nbd.2009.02.011

    Article  CAS  PubMed  Google Scholar 

  123. Boxer AL, Lang AE, Grossman M, Knopman DS, Miller BL, Schneider LS, Doody RS, Lees A et al (2014) Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol 13(7):676–685. doi:10.1016/S1474-4422(14)70088-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou J, Yu Q, Zou T (2008) Alternative splicing of exon 10 in the tau gene as a target for treatment of tauopathies. BMC Neurosci 9(Suppl 2):S10. doi:10.1186/1471-2202-9-S2-S10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Peacey E, Rodriguez L, Liu Y, Wolfe MS (2012) Targeting a pre-mRNA structure with bipartite antisense molecules modulates tau alternative splicing. Nucleic Acids Res 40(19):9836–9849. doi:10.1093/nar/gks710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nygaard HB, van Dyck CH, Strittmatter SM (2014) Fyn kinase inhibition as a novel therapy for Alzheimer's disease. Alzheimers Res Ther 6(1):8. doi:10.1186/alzrt238

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kaufman AC, Salazar SV, Haas LT, Yang J, Kostylev MA, Jeng AT, Robinson SA, Gunther EC, et al. (2015) Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Annals of neurology. doi:10.1002/ana.24394

  128. Hampton DW, Webber DJ, Bilican B, Goedert M, Spillantini MG, Chandran S (2010) Cell-mediated neuroprotection in a mouse model of human tauopathy. J Neurosci 30(30):9973–9983. doi:10.1523/JNEUROSCI.0834-10.2010

    Article  CAS  PubMed  Google Scholar 

  129. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller FJ, Loring JF, Yamasaki TR, Poon WW et al (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 106(32):13594–13599. doi:10.1073/pnas.0901402106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81471309, 81371406, 81171209, 81571245,81501103), the Shandong Provincial Outstanding Medical Academic Professional Program, Qingdao Key Health Discipline Development Fund, Qingdao Outstanding Health Professional Development Fund, and Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders.

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Tan or Jin-Tai Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CC., Xing, A., Tan, MS. et al. The Role of MAPT in Neurodegenerative Diseases: Genetics, Mechanisms and Therapy. Mol Neurobiol 53, 4893–4904 (2016). https://doi.org/10.1007/s12035-015-9415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9415-8

Keywords

Navigation