Skip to main content

Advertisement

Log in

The Association of Amyloid-β Protein Precursor With α- and β-Secretases in Mouse Cerebral Cortex Synapses Is Altered in Early Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Amyloid-β peptides (Aβ), the proposed triggers of synaptic dysfunction in early Alzheimer’s disease (AD), derive from the endoproteolytic cleavage of amyloid-β precursor protein (APP) by β-secretases (BACE1), whereas APP cleavage by α-secretases (ADAM10) abrogates Aβ formation. We now mapped the synaptic localization of APP, ADAM10, and BACE1 in the mouse cerebral cortex. All three proteins were present in cortical synapses and subsynaptic fractionation revealed that APP was located mainly in the pre-synaptic active zone (53 %) and in the post-synaptic density (37 %), whereas ADAM10 was enriched in the post-synaptic density (61 %) and BACE1 was concentrated in extra-synaptic regions (72 %). Immunocytochemistry analysis further showed that APP and BACE1 were co-localized in about 30 % of both glutamatergic and GABAergic terminals, whereas few terminals were endowed with ADAM10. This distribution is modified in a mouse model of early AD based on Aβ1–42-intracerebroventricular injection, where the synaptic levels of APP and ADAM10 increased by 30 %, whereas BACE1 levels were reduced. This suggests that, in early AD, there are compensatory mechanisms to avoid Aβ overload in cortical synapses favoring the non-amyloidogenic processing of APP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44:181–193

    Article  CAS  PubMed  Google Scholar 

  2. Agostinho P, Pliássova A, Oliveira CR, Cunha RA (2015) Localization and trafficking of amyloid-β protein precursor and secretases: impact on Alzheimer’s disease. J Alzheimers Dis 45:329–347

    CAS  PubMed  Google Scholar 

  3. Turner PR, O’Connor K, Tate WP, Abraham WC (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 70:1–32

    Article  CAS  PubMed  Google Scholar 

  4. Endres K, Fahrenholz F (2010) Upregulation of the α-secretase ADAM10-risk or reason for hope? FEBS J 277:1585–1596

    Article  CAS  PubMed  Google Scholar 

  5. Vincent B, Govitrapong P (2011) Activation of the α-secretase processing of AβPP as a therapeutic approach in Alzheimer’s disease. J Alzheimers Dis 24(Suppl 2):75–94

    CAS  PubMed  Google Scholar 

  6. Chasseigneaux S, Allinquant B (2012) Functions of Aβ, sAPPα and sAPPβ: similarities and differences. J Neurochem 120(Suppl 1):99–108

    Article  CAS  PubMed  Google Scholar 

  7. Marcello E, Saraceno C, Musardo S, Vara H, de la Fuente AG, Pelucchi S, Di Marino D, Borroni B et al (2013) Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer’s disease. J Clin Invest 123:2523–2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vassar R, Kuhn PH, Haass C, Kennedy ME, Rajendran L, Wong PC, Lichtenthaler SF (2014) Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J Neurochem 130:4–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng H, Koo EH (2011) Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegener 6:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jiang S, Li Y, Zhang X, Bu G, Xu H, Zhang YW (2014) Trafficking regulation of proteins in Alzheimer’s disease. Mol Neurodegener 9:6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R (2003) APP processing and synaptic function. Neuron 37:925–937

    Article  CAS  PubMed  Google Scholar 

  13. Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807

    Article  CAS  PubMed  Google Scholar 

  14. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  CAS  PubMed  Google Scholar 

  15. Scheff SW, Price DA, Ansari MA, Roberts KN, Schmitt FA, Ikonomovic MD, Mufson EJ (2015) Synaptic change in the posterior cingulate gyrus in the progression of Alzheimer’s disease. J Alzheimers Dis 43:1073–1090

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Canas PM, Porciúncula LO, Cunha GM, Silva CG, Machado NJ, Oliveira JM, Oliveira CR, Cunha RA (2009) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by β-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29:14741–14751

    Article  CAS  PubMed  Google Scholar 

  17. Canas PM, Simões AP, Rodrigues RJ, Cunha RA (2014) Predominant loss of glutamatergic terminal markers in a β-amyloid peptide model of Alzheimer’s disease. Neuropharmacology 76:51–56

    Article  CAS  PubMed  Google Scholar 

  18. Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 125:141–149

    Article  CAS  PubMed  Google Scholar 

  19. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110

    Article  CAS  PubMed  Google Scholar 

  20. Espinosa J, Rocha A, Nunes F, Costa MS, Schein V, Kazlauckas V, Kalinine E, Souza DO et al (2013) Caffeine consumption prevents memory impairment, neuronal damage, and adenosine A2A receptors upregulation in the hippocampus of a rat model of sporadic dementia. J Alzheimers Dis 34:509–518

    CAS  PubMed  Google Scholar 

  21. Rodrigues DI, Gutierres J, Pliássova A, Oliveira CR, Cunha RA, Agostinho P (2014) Synaptic and subsynaptic localization of amyloid-β protein precursor in the rat hippocampus. J Alzheimers Dis 40:981–992

    CAS  PubMed  Google Scholar 

  22. Whittaker VP (1965) The application of subcellular fractionation techniques to the study of brain function. Prog Biophys Mol Biol 15:39–96

    Article  CAS  PubMed  Google Scholar 

  23. Krapfenbauer K, Fountoulakis M, Lubec G (2003) A rat brain protein expression map including cytosolic and enriched mitochondrial and microsomal fractions. Electrophoresis 24:1847–1870

    Article  CAS  PubMed  Google Scholar 

  24. Phillips GR, Huang JK, Wang Y, Tanaka H, Shapiro L, Zhang W, Shan WS, Arndt K et al (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32:63–77

    Article  CAS  PubMed  Google Scholar 

  25. Rebola N, Pinheiro PC, Oliveira CR, Malva JO, Cunha RA (2003) Subcellular localization of adenosine A1 receptors in nerve terminals and synapses of the rat hippocampus. Brain Res 987:49–58

    Article  CAS  PubMed  Google Scholar 

  26. Garção P, Oliveira CR, Cunha RA, Agostinho P (2014) Subsynaptic localization of nicotinic acetylcholine receptor subunits: a comparative study in the mouse and rat striatum. Neurosci Lett 566:106–110

    Article  PubMed  Google Scholar 

  27. Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86:3993–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Augusto E, Matos M, Sévigny J, El-Tayeb A, Bynoe MS, Müller CE, Cunha RA, Chen JF (2013) Ecto-5′-nucleotidase (CD73)-mediated formation of adenosine is critical for the striatal adenosine A2A receptor functions. J Neurosci 33:11390–11399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matos M, Augusto E, Agostinho P, Cunha RA, Chen JF (2013) Antagonistic interaction between adenosine A2A receptors and Na+/K+-ATPase-α2 controlling glutamate uptake in astrocytes. J Neurosci 33:18492–18502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Capell A, Steiner H, Willem M, Kaiser H, Meyer C, Walter J, Lammich S, Multhaup G et al (2000) Maturation and pro-peptide cleavage of β-secretase. J Biol Chem 275:30849–30854

    Article  CAS  PubMed  Google Scholar 

  31. Epis R, Marcello E, Gardoni F, Di Luca M (2012) α-, β- and γ-secretases in Alzheimer’s disease. Front Biosci 4:1126–1150

    Google Scholar 

  32. Korte M, Herrmann U, Zhang X, Draguhn A (2012) The role of APP and APLP for synaptic transmission, plasticity, and network function: lessons from genetic mouse models. Exp Brain Res 217:435–440

    Article  CAS  PubMed  Google Scholar 

  33. Tyan SH, Shih AY, Walsh JJ, Maruyama H, Sarsoza F, Ku L, Eggert S, Hof PR et al (2012) Amyloid precursor protein (APP) regulates synaptic structure and function. Mol Cell Neurosci 51:43–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Octave JN, Pierrot N, Santos S, Nalivaeva NN, Turner AJ (2013) From synaptic spines to nuclear signaling: nuclear and synaptic actions of the amyloid precursor protein. J Neurochem 126:183–190

    Article  CAS  PubMed  Google Scholar 

  35. Groemer TW, Thiel CS, Holt M, Riedel D, Hua Y, Hüve J, Wilhelm BG, Klingauf J (2011) Amyloid precursor protein is trafficked and secreted via synaptic vesicles. PLoS One 6, e18754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laßek M, Weingarten J, Einsfelder U, Brendel P, Müller U, Volknandt W (2013) Amyloid precursor proteins are constituents of the presynaptic active zone. J Neurochem 127:48–56

    PubMed  Google Scholar 

  37. Wang Z, Wang B, Yang L, Guo Q, Aithmitti N, Songyang Z, Zheng H (2009) Presynaptic and postsynaptic interaction of the amyloid precursor protein promotes peripheral and central synaptogenesis. J Neurosci 29:10788–10801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim TW, Wu K, Xu JL, McAuliffe G, Tanzi RE, Wasco W, Black IB (1995) Selective localization of amyloid precursor-like protein 1 in the cerebral cortex postsynaptic density. Mol Brain Res 32:36–44

    Article  CAS  PubMed  Google Scholar 

  39. Marcello E, Gardoni F, Mauceri D, Romorini S, Jeromin A, Epis R, Borroni B, Cattabeni F et al (2007) Synapse-associated protein-97 mediates alpha-secretase ADAM10 trafficking and promotes its activity. J Neurosci 27:1682–1691

    Article  CAS  PubMed  Google Scholar 

  40. Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, Lee JM, Holtzman DM (2011) Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat Neurosci 14:750–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Verges DK, Restivo JL, Goebel WD, Holtzman DM, Cirrito JR (2011) Opposing synaptic regulation of amyloid-β metabolism by NMDA receptors in vivo. J Neurosci 31:11328–11337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuhn PH, Wang H, Dislich B, Colombo A, Zeitschel U, Ellwart JW, Kremmer E, Rossner S et al (2010) ADAM10 is the physiologically relevant, constitutive α-secretase of the amyloid precursor protein in primary neurons. EMBO J 29:3020–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, Wong PC (2001) BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat Neurosci 4:233–234

    Article  CAS  PubMed  Google Scholar 

  44. Epis R, Marcello E, Gardoni F, Vastagh C, Malinverno M, Balducci C, Colombo A, Borroni B et al (2010) Blocking ADAM10 synaptic trafficking generates a model of sporadic Alzheimer’s disease. Brain 133:3323–3335

    Article  PubMed  Google Scholar 

  45. Prox J, Bernreuther C, Altmeppen H, Grendel J, Glatzel M, D’Hooge R, Stroobants S, Ahmed T et al (2013) Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions. J Neurosci 33:12915–12928

    Article  CAS  PubMed  Google Scholar 

  46. Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang HC et al (2005) BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci 25:11693–11709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ma H, Lesné S, Kotilinek L, Steidl-Nichols JV, Sherman M, Younkin L, Younkin S, Forster C et al (2007) Involvement of β-site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein-mediated enhancement of memory and activity-dependent synaptic plasticity. Proc Natl Acad Sci U S A 104:8167–8172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Filser S, Ovsepian SV, Masana M, Blazquez-Llorca L, Brandt Elvang A, Volbracht C, Müller MB, Jung CK et al (2015) Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions. Biol Psychiatry 77:729–739

    Article  CAS  PubMed  Google Scholar 

  49. Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R (2013) The Alzheimer’s β-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol 126:329–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buggia-Prévot V, Fernandez CG, Riordan S, Vetrivel KS, Roseman J, Waters J, Bindokas VP, Vassar R et al (2014) Axonal BACE1 dynamics and targeting in hippocampal neurons: a role for Rab11 GTPase. Mol Neurodegener 9:1

    Article  PubMed  PubMed Central  Google Scholar 

  51. Koh YH, von Arnim CA, Hyman BT, Tanzi RE, Tesco G (2005) BACE is degraded via the lysosomal pathway. J Biol Chem 280:32499–32504

    Article  CAS  PubMed  Google Scholar 

  52. Brunholz S, Sisodia S, Lorenzo A, Deyts C, Kins S, Morfini G (2012) Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells. Exp Brain Res 217:353–364

    Article  CAS  PubMed  Google Scholar 

  53. Sannerud R, Declerck I, Peric A, Raemaekers T, Menendez G, Zhou L, Veerle B, Coen K et al (2011) ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc Natl Acad Sci U S A 108:559–568

    Article  Google Scholar 

  54. Malnar M, Kosicek M, Lisica A, Posavec M, Krolo A, Njavro J, Omerbasic D, Tahirovic S et al (2012) Cholesterol-depletion corrects APP and BACE1 misstrafficking in NPC1-deficient cells. Biochim Biophys Acta 1822:1270–1283

    Article  CAS  PubMed  Google Scholar 

  55. Das U, Scott DA, Ganguly A, Koo EH, Tang Y, Roy S (2013) Activity-induced convergence of APP and BACE-1 in acidic microdomains via an endocytosis-dependent pathway. Neuron 79:447–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Del Prete D, Lombino F, Liu X, D’Adamio L (2014) APP is cleaved by BACE1 in pre-synaptic vesicles and establishes a pre-synaptic interactome, via its intracellular domain, with molecular complexes that regulate pre-synaptic vesicles functions. PLoS One 9, e108576

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kinoshita A, Fukumoto H, Shah T, Whelan CM, Irizarry MC, Hyman BT (2003) Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. J Cell Sci 116:3339–3346

    Article  CAS  PubMed  Google Scholar 

  58. Johnson SA, McNeill T, Cordell B, Finch CE (1990) Relation of neuronal APP-751/APP-695 mRNA ratio and neuritic plaque density in Alzheimer’s disease. Science 248:854–857

    Article  CAS  PubMed  Google Scholar 

  59. Preece P, Virley DJ, Costandi M, Coombes R, Moss SJ, Mudge AW, Jazin E, Cairns NJ (2004) Amyloid precursor protein mRNA levels in Alzheimer’s disease brain. Mol Brain Res 122:1–9

    Article  CAS  PubMed  Google Scholar 

  60. Matsui T, Ingelsson M, Fukumoto H, Ramasamy K, Kowa H, Frosch MP, Irizarry MC, Hyman BT (2007) Expression of APP pathway mRNAs and proteins in Alzheimer’s disease. Brain Res 1161:116–123

    Article  CAS  PubMed  Google Scholar 

  61. Moir RD, Lynch T, Bush AI, Whyte S, Henry A, Portbury S, Multhaup G, Small DH et al (1998) Relative increase in Alzheimer’s disease of soluble forms of cerebral Aβ-amyloid protein precursor containing the Kunitz protease inhibitory domain. J Biol Chem 273:5013–5019

    Article  CAS  PubMed  Google Scholar 

  62. Scheff SW, Price DA (2006) Alzheimer’s disease-related alterations in synaptic density: neocortex and hippocampus. J Alzheimers Dis 9(Suppl 3):101–115

    PubMed  Google Scholar 

  63. Gatta LB, Albertini A, Ravid R, Finazzi D (2002) Levels of β-secretase BACE and α-secretase ADAM10 mRNAs in Alzheimer hippocampus. Neuroreport 13:2031–2033

    Article  CAS  PubMed  Google Scholar 

  64. Bernstein HG, Bukowska A, Krell D, Bogerts B, Ansorge S, Lendeckel U (2003) Comparative localization of ADAMs 10 and 15 in human cerebral cortex normal aging, Alzheimer disease and down syndrome. J Neurocytol 32:153–160

    Article  CAS  PubMed  Google Scholar 

  65. Santosa C, Rasche S, Barakat A, Bellingham SA, Ho M, Tan J, Hill AF, Masters CL et al (2011) Decreased expression of GGA3 protein in Alzheimer’s disease frontal cortex and increased co-distribution of BACE with the amyloid precursor protein. Neurobiol Dis 43:176–183

    Article  CAS  PubMed  Google Scholar 

  66. Bigl M, Apelt J, Luschekina EA, Lange-Dohna C, Rossner S, Schliebs R (2000) Expression of beta-secretase mRNA in transgenic Tg2576 mouse brain with Alzheimer plaque pathology. Neurosci Lett 292:107–110

    Article  CAS  PubMed  Google Scholar 

  67. Li R, Lindholm K, Yang LB, Yue X, Citron M, Yan R, Beach T, Sue L et al (2004) Amyloid β peptide load is correlated with increased β-secretase activity in sporadic Alzheimer’s disease patients. Proc Natl Acad Sci U S A 101:3632–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is funded by FEDER funds through the Operational Program Competitiveness Factors—COMPETE and national funds by Foundation for Science and Technology (project PTDC/SAU-NMC/114810/2009) and strategic project UID/NEU/04539/2013, Santa Casa da Misericórdia de Lisboa and QREN (CENTRO-07-ST24-FEDER-002006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Agostinho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pliássova, A., Lopes, J.P., Lemos, C. et al. The Association of Amyloid-β Protein Precursor With α- and β-Secretases in Mouse Cerebral Cortex Synapses Is Altered in Early Alzheimer’s Disease. Mol Neurobiol 53, 5710–5721 (2016). https://doi.org/10.1007/s12035-015-9491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9491-9

Keywords

Navigation