Skip to main content

Advertisement

Log in

Pro-Resolving Lipid Mediators Improve Neuronal Survival and Increase Aβ42 Phagocytosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Inflammation in the brain is a prominent feature in Alzheimer’s disease (AD). Recent studies suggest that chronic inflammation can be a consequence of failure to resolve the inflammation. Resolution of inflammation is mediated by a family of lipid mediators (LMs), and the levels of these specialized pro-resolving mediators (SPMs) are reduced in the hippocampus of those with AD. In the present study, we combined analysis of LMs in the entorhinal cortex (ENT) from AD patients with in vitro analysis of their direct effects on neurons and microglia. We probed ENT, an area affected early in AD pathogenesis, by liquid chromatography-tandem mass spectrometry (LC-MS-MS), and found that the levels of the SPMs maresin 1 (MaR1), protectin D1 (PD1), and resolvin (Rv) D5, were lower in ENT of AD patients as compared to age-matched controls, while levels of the pro-inflammatory prostaglandin D2 (PGD2) were higher in AD. In vitro studies showed that lipoxin A4 (LXA4), MaR1, resolvin D1 (RvD1), and protectin DX (PDX) exerted neuroprotective activity, and that MaR1 and RvD1 down-regulated β-amyloid (Aβ)42-induced inflammation in human microglia. MaR1 exerted a stimulatory effect on microglial uptake of Aβ42. Our findings give further evidence for a disturbance of the resolution pathway in AD, and indicate that stimulating this pathway is a promising treatment strategy for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Farooqui AA, Wells K, Horrocks LA (1995) Breakdown of membrane phospholipids in Alzheimer disease. Involvement of excitatory amino acid receptors. Mol Chem Neuropathol 25(2–3):155–173

    Article  CAS  PubMed  Google Scholar 

  2. Stephenson DT, Lemere CA, Selkoe DJ, Clemens JA (1996) Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer’s disease brain. Neurobiol Dis 3(1):51–63

    Article  CAS  PubMed  Google Scholar 

  3. Skinner ER, Watt C, Besson JA, Best PV (1993) Differences in the fatty acid composition of the grey and white matter of different regions of the brains of patients with Alzheimer’s disease and control subjects. Brain 116(Pt 3):717–725

    Article  PubMed  Google Scholar 

  4. Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115(10):2774–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dullemeijer C, Durga J, Brouwer IA, van de Rest O, Kok FJ, Brummer RJ, van Boxtel MP, Verhoef P (2007) n-3 fatty acid proportions in plasma and cognitive performance in older adults. Am J Clin Nutr 86(5):1479–1485

    CAS  PubMed  Google Scholar 

  6. Ikonomovic MD, Abrahamson EE, Uz T, Manev H, Dekosky ST (2008) Increased 5-lipoxygenase immunoreactivity in the hippocampus of patients with Alzheimer’s disease. J Histochem Cytochem 56(12):1065–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mohri I, Kadoyama K, Kanekiyo T, Sato Y, Kagitani-Shimono K, Saito Y, Suzuki K, Kudo T et al (2007) Hematopoietic prostaglandin D synthase and DP1 receptor are selectively upregulated in microglia and astrocytes within senile plaques from human patients and in a mouse model of Alzheimer disease. J Neuropathol Exp Neurol 66(6):469–480

    Article  CAS  PubMed  Google Scholar 

  8. Firuzi O, Zhuo J, Chinnici CM, Wisniewski T, Pratico D (2008) 5-Lipoxygenase gene disruption reduces Aβ pathology in a mouse model of Alzheimer’s disease. FASEB J 22(4):1169–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cacabelos R, Alvarez XA, Fernandez-Novoa L, Franco A, Mangues R, Pellicer A, Nishimura T (1994) Brain interleukin-1β in Alzheimer’s disease and vascular dementia. Methods Find Exp Clin Pharmacol 16:141–151

    CAS  PubMed  Google Scholar 

  10. Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL 3rd, Araoz C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 86(19):7611–7615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79(1–2):195–200

    Article  CAS  PubMed  Google Scholar 

  12. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185

    Article  CAS  PubMed  Google Scholar 

  13. Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7(8):656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wicklund L, Leao RN, Strömberg AM, Mousavi M, Hovatta O, Nordberg A, Marutle A (2010) Aβ42 oligomers impair function of human embryonic stem cell-derived forebrain cholinergic neurons. PLoS One 5(12):e15600

    Article  PubMed  PubMed Central  Google Scholar 

  15. Del Bo R, Angeretti N, Lucca E, De Simoni MG, Forloni G (1995) Reciprocal control of inflammatory cytokines, IL-1 and IL-6, and β-amyloid production in cultures. Neurosci Lett 188(1):70–74

    Article  PubMed  Google Scholar 

  16. Blasko I, Marx F, Steiner E, Hartmann T, Grubeck-Loebenstein B (1999) TNFα plus IFNγ induce the production of Alzheimer β-amyloid peptides and decrease the secretion of APPs. FASEB J 13:63–68

    CAS  PubMed  Google Scholar 

  17. McGeer PL, Schulzer M, McGeer EG (1996) Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 47(2):425–432

    Article  CAS  PubMed  Google Scholar 

  18. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510(7503):92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Samuelsson B, Dahlén SE, Lindgren JA, Rouzer CA, Serhan CN (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237(4819):1171–1176

    Article  CAS  PubMed  Google Scholar 

  20. Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K (2000) Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med 192(8):1197–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN (2003) Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem 278(17):14677–14687

    Article  CAS  PubMed  Google Scholar 

  22. Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, Moussignac RL (2002) Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 196(8):1025–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buckley CD, Gilroy DW, Serhan CN (2014) Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 40(3):315–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu MX, Tan BC, Zhou W, Wei T, Lai WH, Tan JW, Dong JH (2013) Resolvin D1, an endogenous lipid mediator for inactivation of inflammation-related signaling pathways in microglial cells, prevents lipopolysaccharide-induced inflammatory responses. CNS Neurosci Ther 19(4):235–243

    Article  CAS  PubMed  Google Scholar 

  25. Xu ZZ, Liu XJ, Berta T, Park CK, Lu N, Serhan CN, Ji RR (2013) NpD/PD1 protects against neuropathic pain in mice after nerve trauma. Ann Neurol 74(3):490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sobrado M, Pereira MP, Ballesteros I, Hurtado O, Fernandez-Lopez D, Pradillo JM, Caso JR, Vivancos J et al (2009) Synthesis of lipoxin A4 by 5-lipoxygenase mediates PPARγ-dependent, neuroprotective effects of rosiglitazone in experimental stroke. J Neurosci 29(12):3875–3884

    Article  CAS  PubMed  Google Scholar 

  27. Cudaback E, Jorstad NL, Yang Y, Montine TJ, Keene CD (2014) Therapeutic implications of the prostaglandin pathway in Alzheimer’s disease. Biochem Pharmacol 88(4):565–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cunningham C, Skelly DT (2012) Non-steroidal anti-inflammatory drugs and cognitive function: are prostaglandins at the heart of cognitive impairment in dementia and delirium? J Neuroimmune Pharmacol 7(1):60–73

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang X, Zhu M, Hjorth E, Cortés-Toro V, Eyjolfsdottir H, Graff C, Nennesmo I, Palmblad J et al (2015) Resolution of inflammation is altered in Alzheimer’s disease. Alzheimers Dement 11:40–50

    Article  PubMed  PubMed Central  Google Scholar 

  30. Khan UA, Liu L, Provenzano FA, Berman DE, Profaci CP, Sloan R, Mayeux R, Duff KE et al (2014) Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nat Neurosci 17(2):304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Colas RA, Shinohara M, Dalli J, Chiang N, Serhan CN (2014) Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue. Am J Physiol Cell Physiol 307(1):C39–C54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dalli J, Serhan CN (2012) Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 120(15):e60–e72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Cena V, Gallego C, Comella JX (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75(3):991–1003

    Article  CAS  PubMed  Google Scholar 

  34. Hjorth E, Zhu M, Toro VC, Vedin I, Palmblad J, Cederholm T, Freund-Levi Y, Faxen-Irving G et al (2013) Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-β42 by human microglia and decrease inflammatory markers. J Alzheimers Dis 35(4):697–713

    PubMed  Google Scholar 

  35. Aisen PS, Davis KL (1994) Inflammatory mechanisms in Alzheimer’s disease: implications for therapy. Am J Psychiatry 151(8):1105–1113

    Article  CAS  PubMed  Google Scholar 

  36. Mann DM, Iwatsubo T, Fukumoto H, Ihara Y, Odaka A, Suzuki N (1995) Microglial cells and amyloid β protein (Aβ) deposition; association with Aβ40-containing plaques. Acta Neuropathol (Berl) 90(5):472–477

    Article  CAS  Google Scholar 

  37. Freund-Levi Y, Eriksdotter-Jönhagen M, Cederholm T, Basun H, Faxen-Irving G, Garlind A, Vedin I, Vessby B et al (2006) Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol 63(10):1402–1408

    Article  PubMed  Google Scholar 

  38. Zhu M, Wang X, Hjorth E, Schultzberg M (2015) Differential regulation of resolution in inflammation induced by Aβ42 and LPS in human microglia. J Alzheimers Dis 43:1237–1250

    CAS  PubMed  Google Scholar 

  39. Haynes RL, van Leyen K (2013) 12/15-lipoxygenase expression is increased in oligodendrocytes and microglia of periventricular leukomalacia. Dev Neurosci 35(2–3):140–154

    CAS  PubMed  Google Scholar 

  40. Lammers CH, Schweitzer P, Facchinetti P, Arrang JM, Madamba SG, Siggins GR, Piomelli D (1996) Arachidonate 5-lipoxygenase and its activating protein: prominent hippocampal expression and role in somatostatin signaling. J Neurochem 66(1):147–152

    Article  CAS  PubMed  Google Scholar 

  41. Ohtsuki T, Matsumoto M, Hayashi Y, Yamamoto K, Kitagawa K, Ogawa S, Yamamoto S, Kamada T (1995) Reperfusion induces 5-lipoxygenase translocation and leukotriene C4 production in ischemic brain. Am J Physiol 268(3 Pt 2):H1249–H1257

    CAS  PubMed  Google Scholar 

  42. Pratico D, Zhukareva V, Yao Y, Uryu K, Funk CD, Lawson JA, Trojanowski JQ, Lee VM (2004) 12/15-lipoxygenase is increased in Alzheimer’s disease: possible involvement in brain oxidative stress. Am J Pathol 164(5):1655–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luo M, Jones SM, Phare SM, Coffey MJ, Peters-Golden M, Brock TG (2004) Protein kinase A inhibits leukotriene synthesis by phosphorylation of 5-lipoxygenase on serine 523. J Biol Chem 279(40):41512–41520

    Article  CAS  PubMed  Google Scholar 

  44. Ye Y, Lin Y, Perez-Polo JR, Uretsky BF, Ye Z, Tieu BC, Birnbaum Y (2008) Phosphorylation of 5-lipoxygenase at Ser523 by protein kinase A determines whether pioglitazone and atorvastatin induce proinflammatory leukotriene B4 or anti-inflammatory 15-epi-lipoxin A4 production. J Immunol 181(5):3515–3523

    Article  CAS  PubMed  Google Scholar 

  45. De Simone R, Ajmone-Cat MA, Carnevale D, Minghetti L (2005) Activation of α7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J Neuroinflammation 2(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bazinet RP, Laye S (2014) Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 15(12):771–785

    Article  CAS  PubMed  Google Scholar 

  47. Astarita G, Jung KM, Berchtold NC, Nguyen VQ, Gillen DL, Head E, Cotman CW, Piomelli D (2010) Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer’s disease. PLoS One 5(9):e12538

    Article  PubMed  PubMed Central  Google Scholar 

  48. Medeiros R, Kitazawa M, Passos GF, Baglietto-Vargas D, Cheng D, Cribbs DH, LaFerla FM (2013) Aspirin-triggered lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer disease-like pathology in mice. Am J Pathol 182(5):1780–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mizwicki MT, Liu G, Fiala M, Magpantay L, Sayre J, Siani A, Mahanian M, Weitzman R et al (2013) 1α,25-dihydroxyvitamin D3 and resolvin D1 retune the balance between amyloid-β phagocytosis and inflammation in Alzheimer’s disease patients. J Alzheimers Dis 34:155–170

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao Y, Calon F, Julien C, Winkler JW, Petasis NA, Lukiw WJ, Bazan NG (2011) Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPAR-γ-mediated mechanisms in Alzheimer’s disease models. PLoS ONE 6(1):e15816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN (1997) Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J Biol Chem 272(11):6972–6978

    Article  CAS  PubMed  Google Scholar 

  52. Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH, Yang R, Petasis NA, Serhan CN (2010) Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc Natl Acad Sci U S A 107(4):1660–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deshmukh M, Johnson EM Jr (2000) Staurosporine-induced neuronal death: multiple mechanisms and methodological implications. Cell Death Differ 7(3):250–261

    Article  CAS  PubMed  Google Scholar 

  54. Padurariu M, Ciobica A, Lefter R, Serban IL, Stefanescu C, Chirita R (2013) The oxidative stress hypothesis in Alzheimer’s disease. Psychiatr Danub 25(4):401–409

    CAS  PubMed  Google Scholar 

  55. Prieto P, Cuenca J, Traves PG, Fernandez-Velasco M, Martin-Sanz P, Bosca L (2010) Lipoxin A4 impairment of apoptotic signaling in macrophages: implication of the PI3K/Akt and the ERK/Nrf-2 defense pathways. Cell Death Differ 17(7):1179–1188

    Article  CAS  PubMed  Google Scholar 

  56. Calandria JM, Asatryan A, Balaszczuk V, Knott EJ, Jun BK, Mukherjee PK, Belayev L, Bazan NG (2015) NPD1-mediated stereoselective regulation of BIRC3 expression through cREL is decisive for neural cell survival. Cell Death Differ 22(8):1363–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Calandria JM, Mukherjee PK, de Rivero Vaccari JC, Zhu M, Petasis NA, Bazan NG (2012) Ataxin-1 poly(Q)-induced proteotoxic stress and apoptosis are attenuated in neural cells by docosahexaenoic acid-derived neuroprotectin D1. J Biol Chem 287(28):23726–23739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Balas L, Guichardant M, Durand T, Lagarde M (2014) Confusion between protectin D1 (PD1) and its isomer protectin DX (PDX). An overview on the dihydroxy-docosatrienes described to date. Biochimie 99:1–7

    Article  CAS  PubMed  Google Scholar 

  59. Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, Baer T, Yang R, Colgan SP et al (2006) Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol 176(3):1848–1859

    Article  CAS  PubMed  Google Scholar 

  60. Liu M, Boussetta T, Makni-Maalej K, Fay M, Driss F, El-Benna J, Lagarde M, Guichardant M (2014) Protectin DX, a double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities. Lipids 49(1):49–57

    Article  PubMed  Google Scholar 

  61. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A 101(22):8491–8496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Antony R, Lukiw WJ, Bazan NG (2010) Neuroprotectin D1 induces dephosphorylation of Bcl-xL in a PP2A-dependent manner during oxidative stress and promotes retinal pigment epithelial cell survival. J Biol Chem 285(24):18301–18308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Halapin NA, Bazan NG (2010) NPD1 induction of retinal pigment epithelial cell survival involves PI3K/Akt phosphorylation signaling. Neurochem Res 35(12):1944–1947

    Article  CAS  PubMed  Google Scholar 

  64. Weinberger B, Quizon C, Vetrano AM, Archer F, Laskin JD, Laskin DL (2008) Mechanisms mediating reduced responsiveness of neonatal neutrophils to lipoxin A4. Pediatr Res 64(4):393–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liao Z, Dong J, Wu W, Yang T, Wang T, Guo L, Chen L, Xu D et al (2012) Resolvin D1 attenuates inflammation in lipopolysaccharide-induced acute lung injury through a process involving the PPARγ/NF-κB pathway. Respir Res 13:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kovacs DM, Mancini R, Henderson J, Na SJ, Schmidt SD, Kim TW, Tanzi RE (1999) Staurosporine-induced activation of caspase-3 is potentiated by presenilin 1 familial Alzheimer’s disease mutations in human neuroglioma cells. J Neurochem 73(6):2278–2285

    Article  CAS  PubMed  Google Scholar 

  67. Tan J, Town T, Paris D, Mori T, Suo Z, Crawford F, Mattson MP, Flavell RA et al (1999) Microglial activation resulting from CD40-CD40L interaction after β-amyloid stimulation. Science 286(5448):2352–2355

    Article  CAS  PubMed  Google Scholar 

  68. Townsend KP, Shytle DR, Bai Y, San N, Zeng J, Freeman M, Mori T, Fernandez F et al (2004) Lovastatin modulation of microglial activation via suppression of functional CD40 expression. J Neurosci Res 78(2):167–176

    Article  CAS  PubMed  Google Scholar 

  69. Togo T, Akiyama H, Kondo H, Ikeda K, Kato M, Iseki E, Kosaka K (2000) Expression of CD40 in the brain of Alzheimer’s disease and other neurological diseases. Brain Res 885(1):117–121

    Article  CAS  PubMed  Google Scholar 

  70. Ke ZJ, Calingasan NY, DeGiorgio LA, Volpe BT, Gibson GE (2005) CD40-CD40L interactions promote neuronal death in a model of neurodegeneration due to mild impairment of oxidative metabolism. Neurochem Int 47(3):204–215

    Article  CAS  PubMed  Google Scholar 

  71. Volmar CH, Ait-Ghezala G, Frieling J, Weeks OI, Mullan MJ (2009) CD40/CD40L interaction induces Aβ production and increases γ-secretase activity independently of tumor necrosis factor receptor associated factor (TRAF) signaling. Exp Cell Res 315(13):2265–2274

    Article  CAS  PubMed  Google Scholar 

  72. Akiyama H, McGeer PL (1990) Brain microglia constitutively express β2 integrins. J Neuroimmunol 30(1):81–93

    Article  CAS  PubMed  Google Scholar 

  73. Barthel SR, Jarjour NN, Mosher DF, Johansson MW (2006) Dissection of the hyperadhesive phenotype of airway eosinophils in asthma. Am J Respir Cell Mol Biol 35(3):378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pillay J, Ramakers BP, Kamp VM, Loi AL, Lam SW, Hietbrink F, Leenen LP, Tool AT et al (2010) Functional heterogeneity and differential priming of circulating neutrophils in human experimental endotoxemia. J Leukoc Biol 88(1):211–220

    Article  CAS  PubMed  Google Scholar 

  75. Wilson RP, Winter SE, Spees AM, Winter MG, Nishimori JH, Sanchez JF, Nuccio SP, Crawford RW et al (2011) The Vi capsular polysaccharide prevents complement receptor 3-mediated clearance of Salmonella enterica serotype Typhi. Infect Immun 79(2):830–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM et al (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278(44):43807–43817

    Article  CAS  PubMed  Google Scholar 

  77. Luo CL, Li QQ, Chen XP, Zhang XM, Li LL, Li BX, Zhao ZQ, Tao LY (2013) Lipoxin A4 attenuates brain damage and downregulates the production of pro-inflammatory cytokines and phosphorylated mitogen-activated protein kinases in a mouse model of traumatic brain injury. Brain Res 1502:1–10

    Article  CAS  PubMed  Google Scholar 

  78. Li Y, Dalli J, Chiang N, Baron RM, Quintana C, Serhan CN (2013) Plasticity of leukocytic exudates in resolving acute inflammation is regulated by microRNA and proresolving mediators. Immunity 39(5):885–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Woster AP, Combs CK (2007) Differential ability of a thiazolidinedione PPARγ agonist to attenuate cytokine secretion in primary microglia and macrophage-like cells. J Neurochem 103(1):67–76

    CAS  PubMed  Google Scholar 

  80. Xu J, Barger SW, Drew PD (2008) The PPAR-γ agonist 15-deoxy-δ-prostaglandin J(2) attenuates microglial production of IL-12 family cytokines: potential relevance to Alzheimer’s disease. PPAR Res 2008:349185

    Article  PubMed  PubMed Central  Google Scholar 

  81. Xu J, Storer PD, Chavis JA, Racke MK, Drew PD (2005) Agonists for the peroxisome proliferator-activated receptor-α and the retinoid X receptor inhibit inflammatory responses of microglia. J Neurosci Res 81(3):403–411

    Article  CAS  PubMed  Google Scholar 

  82. Karch CM, Jeng AT, Nowotny P, Cady J, Cruchaga C, Goate AM (2012) Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS One 7(11):e50976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH et al (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid β. Neuron 78(4):631–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Aronoff DM, Serezani CH, Carstens JK, Marshall T, Gangireddy SR, Peters-Golden M, Reddy RC (2007) Stimulatory effects of peroxisome proliferator-activated receptor-γ on Fcγ receptor-mediated phagocytosis by alveolar macrophages. PPAR Res 2007:52546

    Article  PubMed  PubMed Central  Google Scholar 

  85. Majai G, Sarang Z, Csomos K, Zahuczky G, Fesus L (2007) PPAR-γ-dependent regulation of human macrophages in phagocytosis of apoptotic cells. Eur J Immunol 37(5):1343–1354

    Article  CAS  PubMed  Google Scholar 

  86. Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT (2012) PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci 32(48):17321–17331

    Article  CAS  PubMed  Google Scholar 

  87. Dalli J, Zhu M, Vlasenko NA, Deng B, Haeggstrom JZ, Petasis NA, Serhan CN (2013) The novel 13S,14S-epoxy-maresin is converted by human macrophages to maresin 1 (MaR1), inhibits leukotriene A4 hydrolase (LTA4H), and shifts macrophage phenotype. FASEB J 27(7):2573–2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support from the grants from The Swedish Research Council (22743, 22744); Swedish Brain Power; The Chinese Scholarship Council, P.R. China; The Knut and Alice Wallenberg Foundation; Karolinska Institutet research funds; Stiftelsen för Gamla Tjänarinnor; The Swedish Alzheimer Foundation; Gun och Bertil Stohnes Stiftelse; and Barmore Fund (MUSC). This work was also supported in part by the National Institutes of Health (P01GM095467 and GM038765 to C.N.S., and R21AG048631-01A1 to A.-C.G and M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Schultzberg.

Ethics declarations

Conflict of interest

C.N.S. has the following disclosures: as inventor on patents [resolvins] assigned to BWH and licensed to Resolvyx Pharmaceuticals, scientific founder of Resolvyx Pharmaceuticals with equity ownership in the company, and has interests reviewed and managed by the Brigham and Women’s Hospital and Partners Health Care in accordance with their conflict of interest policies.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1a–c

Actions of SPMs on differentiated human SH-SY5Y neuroblastoma cells. The cells were treated with 0–0.5 μM of the specialized pro-resolving mediators (SPMs) lipoxin A4 (LXA4), resolvin D1 (RvD1), maresin 1 (MaR1), and protectin DX (PDX). Treatment with SPMs was repeated at 6 and 24 h, and cell viability and cytotoxicity was assessed at 48 h by resazurin (a) and LDH (b) assay, respectively. As an index of cell survival the ratio between data from the resazurin and LDH assays was calculated (c), showing a significant effect of LXA4 and RvD1. The data were normalized to the average of each individual experiment and are presented as median ± non-outlier range (n = 7). Asterisk indicates p < 0.05 compared to vehicle treatment alone. K-W Kruskal–Wallis analysis of variance, LDH lactate dehydrogenase, SPMs specialized pro-resolving mediators (GIF 40 kb)

High resolution image (EPS 1104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Wang, X., Hjorth, E. et al. Pro-Resolving Lipid Mediators Improve Neuronal Survival and Increase Aβ42 Phagocytosis. Mol Neurobiol 53, 2733–2749 (2016). https://doi.org/10.1007/s12035-015-9544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9544-0

Keywords

Navigation