Skip to main content

Advertisement

Log in

Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 1 (SCA1) is a late onset neurodegenerative disease characterized by cerebellar ataxia with variable degrees of ophthalmoplegia, pyramidal and extrapyramidal signs, and peripheral neuropathy. SCA1 is caused by the toxic effects triggered by an expanded polyglutamine (polyQ) within the protein ataxin 1 (Atxn1) resulting in variable degrees of neurodegeneration in the cerebellum, brainstem, and spinocerebellar tracts. The toxic gain-of-function mechanisms by which the polyQ expansion induces neuronal cell death are not fully understood and no effective therapies are yet available. Alterations in transcriptional regulation, calcium homeostasis, glutamate signaling/excitotoxicity, and impaired protein degradation are few recurrent events in the pathogenesis in SCA1. However, elucidating the molecular routes regulated by ataxin 1 is leading to the discovery of new pathways that are implicated in SCA1. This suggests that dominant-negative effects exerted by the mutant protein, rather than just gain-of-function mechanisms, might be also implicated in SCA1 pathogenesis. The challenge now is to determine how these responses account for the clinical manifestation of the disease symptoms and, ultimately, how this knowledge can be translated into the development of therapeutic strategies. Herein, we review the phenotype and most recent advances in our understanding of the physiopathological mechanisms of neurodegeneration in SCA1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zoghbi HY, Orr HT. Spinocerebellar ataxias. In: Scriver CR, Sly WS, Childs AL, Beaudet AL, Valle D, Kinzler KW, et al., editors, The metabolic and molecular basis of inherited disease. New York: McGraw Professionals, 2001. pp 5741–58.

    Google Scholar 

  2. Harding AE. Clinical features and classification of inherited ataxias. In: Harding AE, Deufel T, editors. Inherited ataxias. Vol. 61, New York: Raven, 1993. pp 1–14.

    Google Scholar 

  3. Matilla-Dueñas A, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias. Brain. 2006;129:1357–70.

    Article  Google Scholar 

  4. Spadaro M, Giunti P, Lulli P, Frontali M, Jodice C, Cappellacci S, et al. HLA-linked spinocerebellar ataxia: A clinical and genetic study of large Italian kindreds. Acta Neurol Scand. 1992;85:257–65.

    Article  PubMed  CAS  Google Scholar 

  5. Genis D, Matilla T, Volpini V, Rosell J, Davalos A, Ferrer I, et al. Clinical, neuropathologic, and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms. Neurology. 1995;45:24–30.

    PubMed  CAS  Google Scholar 

  6. Jackson JF, Currier RD, Terasaki PI, Morton NE. Spinocerebellar ataxia and HLA linkage: Risk prediction by HLA typing. N Engl J Med. 1977;296:1138–41.

    PubMed  CAS  Google Scholar 

  7. Rivaud-Pechoux S, Durr A, Gaymard B, Cancel G, Ploner CJ, Agid Y, et al. Eye movement abnormalities correlate with genotype in autosomal dominant cerebellar ataxia type I. Ann Neurol. 1998;43:297–302.

    Article  PubMed  CAS  Google Scholar 

  8. Burk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, et al. Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3. J Neurol. 1999;246:789–97.

    Article  PubMed  CAS  Google Scholar 

  9. Schols L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: Clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.

    Article  PubMed  Google Scholar 

  10. Schols L, Amoiridis G, Buttner T, Przuntek H, Epplen JT, Riess O. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol. 1997;42:924–32.

    Article  PubMed  CAS  Google Scholar 

  11. Schols L, Amoiridis G, Langkafel M, Schols S, Przuntek H. Motor evoked potentials in the spinocerebellar ataxias type 1 and type 3. Muscle Nerve. 1997;20:226–8.

    Article  PubMed  CAS  Google Scholar 

  12. Guerrini L, Lolli F, Ginestroni A, Belli G, Della Nave R, Tessa C, et al. Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study. Brain. 2004;127:1785–95.

    Article  PubMed  CAS  Google Scholar 

  13. Wang PS, Liu RS, Yang BH, Soong BW. Topographic brain mapping of the international cooperative ataxia rating scale: A positron emission tomography study. J Neurol. 2007; in press.

  14. Sidtis JJ, Gomez C, Groshong A, Strother SC, Rottenberg DA. Mapping cerebral blood flow during speech production in hereditary ataxia. Neuroimaging. 2006;31:246–54.

    Article  Google Scholar 

  15. Ferrer I, Genis D, Davalos A, Bernado L, Sant F, Serrano T. The Purkinje cell in olivopontocerebellar atrophy: A Golgi and immunocytochemical study. Neuropathol Appl Neurobiol. 1994;20:38–46.

    Article  PubMed  CAS  Google Scholar 

  16. Orr H, Chung M-y, Banfi S, Kwiatkowski Jr TJ, Servadio A, Beaudet AL, et al. Expansion of an unstable trinucleotide (CAG) repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4:221–26.

    Article  PubMed  CAS  Google Scholar 

  17. Matilla T, Volpini V, Genis D, Rosell J, Corral J, Davalos A, et al. Presymptomatic analysis of spinocerebellar ataxia type 1 (SCA1) via the expansion of the SCA1 CAG-repeat in a large pedigree displaying anticipation and parental male bias. Hum Mol Genet. 1993;2:2123–8.

    Article  PubMed  CAS  Google Scholar 

  18. Jodice C, Malaspina P, Persichetti F, Novelletto A, Spadaro M, Giunti P, et al. Effect of trinucleotide repeat length and parental sex on phenotypic variation in spinocerebellar ataxia 1. Am J Hum Genet. 1994;54:959–65.

    PubMed  CAS  Google Scholar 

  19. Ranum LPW, Chung M-y, Banfi S, Bryer A, Schut LJ, Ramesar R, et al. Molecular and clinical correlations in spinocerebellar ataxia type 1 (SCA1): Evidence for familial effects on the age of onset. Am J Hum Genet. 1994;55:244–52.

    PubMed  CAS  Google Scholar 

  20. Chung M-y, Ranum LPW, Duvick LA, Servadio A, Zoghbi HY, Orr HT. Evidence for a possible mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat Genet. 1993;5:254–58.

    Article  PubMed  Google Scholar 

  21. Calabresi V, Guida S, Servadio A, Jodice C. Phenotypic effects of expanded ataxin-1 polyglutamines with interruptions in vitro. Brain Res Bull. 2001;56:337–42.

    Article  PubMed  CAS  Google Scholar 

  22. Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: Mechanisms and common principles. Nat Rev Genet. 2005;6:743–55.

    Article  PubMed  CAS  Google Scholar 

  23. Matilla A, Roberson ED, Banfi S, Morales J, Armstrong DL, Burright EN, et al. Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation. J Neurosci. 1998;18:5508–16.

    PubMed  CAS  Google Scholar 

  24. Burright EN, Clark HB, Servadio A, Matilla T, Feddersen RM, Yunis WS, et al. SCA1 transgenic mice: A model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell. 1995;82:937–48.

    Article  PubMed  CAS  Google Scholar 

  25. Clark HB, Burright EN, Yunis WS, Larson S, Wilcox C, Hartman B, et al. Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J Neurosci. 1997;17:7385–95.

    PubMed  CAS  Google Scholar 

  26. Skinner PJ, Vierra-Green CA, Clark HB, Zoghbi HY, Orr HT. Altered trafficking of membrane proteins in purkinje cells of SCA1 transgenic mice. Am J Pathol. 2001;159:905–13.

    PubMed  CAS  Google Scholar 

  27. Watase K, Weeber EJ, Xu B, Antalffy B, Yuva-Paylor L, Hashimoto K, et al. A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron. 2002;34:905–19.

    Article  PubMed  CAS  Google Scholar 

  28. Inoue T, Lin X, Kohlmeier KA, Orr HT, Zoghbi HY, Ross WN. Calcium dynamics and electrophysiological properties of cerebellar Purkinje cells in SCA1 transgenic mice. J Neurophysiol. 2001;85:1750–60.

    PubMed  CAS  Google Scholar 

  29. Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY. Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci. 2000;3:157–63.

    Article  PubMed  CAS  Google Scholar 

  30. Serra HG, Byam CE, Lande JD, Tousey SK, Zoghbi HY, Orr HT. Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Hum Mol Genet. 2004;13:2535–43.

    Article  PubMed  CAS  Google Scholar 

  31. Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet. 1998;19:148–54.

    Article  PubMed  CAS  Google Scholar 

  32. Cummings CJ, Reinstein E, Sun Y, Antalffy B, Jiang Y, Ciechanover A, et al. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron. 1999;24:879–92.

    Article  PubMed  CAS  Google Scholar 

  33. Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, et al. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet. 2001;10:1511–8.

    Article  PubMed  CAS  Google Scholar 

  34. Chen HK, Fernandez-Funez P, Acevedo SF, Lam YC, Kaytor MD, Fernandez MH, et al. Interaction of Akt-phosphorylated ataxin-1 with 14–3–3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell. 2003;113:457–68.

    Article  PubMed  CAS  Google Scholar 

  35. Mizutani A, Wang L, Rajan H, Vig PJ, Alaynick WA, Thaler JP, et al. Boat, an AXH domain protein, suppresses the cytotoxicity of mutant ataxin-1. EMBO J. 2005;24:3339–51.

    Article  PubMed  CAS  Google Scholar 

  36. Matilla A, Koshy BT, Cummings CJ, Isobe T, Orr HT, Zoghbi HY. The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature. 1997;389:974–8.

    Article  PubMed  CAS  Google Scholar 

  37. Mushegian AR, Bassett DE Jr, Boguski MS, Bork P, Koonin EV. Positionally cloned human disease genes: Patterns of evolutionary conservation and functional motifs. Proc Natl Acad Sci USA. 1997;94:5831–6.

    Article  PubMed  CAS  Google Scholar 

  38. de Chiara C, Giannini C, Adinolfi S, de Boer J, Guida S, Ramos A, et al. The AXH module: An independently folded domain common to ataxin-1 and HBP1. FEBS Lett. 2003;551:107–12.

    Article  PubMed  CAS  Google Scholar 

  39. Emamian ES, Kaytor MD, Duvick LA, Zu T, Tousey SK, Zoghbi HY, et al. Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron. 2003;38:375–87.

    Article  PubMed  CAS  Google Scholar 

  40. Tsuda H, Jafar-Nejad H, Patel AJ, Sun Y, Chen HK, Rose MF, et al. The AXH domain of Ataxin-1 mediates neurodegeneration through its interaction with Gfi-1/ Senseless proteins. Cell. 2005;122:633–44.

    Article  PubMed  CAS  Google Scholar 

  41. Okazawa H, Rich T, Chang A, Lin X, Waragai M, Kajikawa M, et al. Interaction between mutant ataxin-1 and PQBP-1 affects transcription and cell death. Neuron. 2002;34:701–13.

    Article  PubMed  CAS  Google Scholar 

  42. Tsai CC, Kao HY, Mitzutani A, Banayo E, Rajan H, McKeown M, et al. Ataxin 1, a SCA1 neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors. Proc Natl Acad Sci USA. 2004;101:4047–52.

    Article  PubMed  CAS  Google Scholar 

  43. Servadio A, Koshy B, Armstrong D, Antalffy B, Orr HT, Zoghbi HY. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nat Genet. 1995;10:94–8.

    Article  PubMed  CAS  Google Scholar 

  44. Skinner PJ, Koshy BT, Cummings CJ, Klement IA, Helin K, Servadio A, et al. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature. 1997;389:971–74.

    Article  PubMed  CAS  Google Scholar 

  45. Chen YW, Allen MD, Veprintsev DB, Lowe J, Bycroft M. The structure of the AXH domain of spinocerebellar ataxin-1. J Biol Chem. 2004;279:3758–65.

    Article  PubMed  CAS  Google Scholar 

  46. de Chiara C, Menon RP, Adinolfi S, de Boer J, Ktistaki E, Kelly G, et al. The AXH domain adopts alternative folds the solution structure of HBP1 AXH. Structure (Camb). 2005;13:743–53.

    Article  CAS  Google Scholar 

  47. Yue S, Serra HG, Zoghbi HY, Orr HT. The spinocerebellar ataxia type 1 protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of its polyglutamine tract. Hum Mol Genet. 2001;10:25–30.

    Article  PubMed  CAS  Google Scholar 

  48. Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell. 1998;95:41–53.

    Article  PubMed  CAS  Google Scholar 

  49. Riley BE, Zoghbi HY, Orr HT. SUMOylation of the polyglutamine repeat protein, ataxin-1, is dependent on a functional nuclear localization signal. J Biol Chem. 2005;280:21942–8.

    Article  PubMed  CAS  Google Scholar 

  50. Al-Ramahi I, Lam YC, Chen HK, de Gouyon B, Zhang M, Perez AM, et al. CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. J Biol Chem. 2006;281:26714–24.

    Article  PubMed  CAS  Google Scholar 

  51. Irwin S, Vandelft M, Pinchev D, Howell JL, Graczyk J, Orr HT, et al. RNA association and nucleocytoplasmic shuttling by ataxin-1. J Cell Sci. 2005;118:233–42.

    Article  PubMed  CAS  Google Scholar 

  52. Banfi S, Servadio A, Chung M, Capozzoli F, Duvick LA, Elde R, et al. Cloning and developmental expression analysis of the murine homolog of the spinocerebellar ataxia type 1 gene (Sca1). Hum Mol Genet. 1996;5:33–40.

    Article  PubMed  CAS  Google Scholar 

  53. Goold R, Hubank M, Hunt A, Holton J, Menon RP, Revesz T, et al. Down-regulation of the dopamine receptor D2 in mice lacking ataxin 1. Submitted.

  54. Sampson EM, Haque ZK, Ku MC, Tevosian SG, Albanese C, Pestell RG, et al. Negative regulation of the Wnt-beta-catenin pathway by the transcriptional repressor HBP1. EMBO J. 2001;20:4500–11.

    Article  PubMed  CAS  Google Scholar 

  55. Ciani L, Salinas PC. WNTs in the vertebrate nervous system: From patterning to neuronal connectivity. Nat Rev Neurosci. 2005;6:351–62.

    Article  PubMed  CAS  Google Scholar 

  56. Glover JC, Renaud JS, Rijli FM. Retinoic acid and hindbrain patterning. J Neurobiol. 2006;66:705–25.

    Article  PubMed  CAS  Google Scholar 

  57. Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. J Recept Signal Transduct Res. 2004;24:165–205.

    Article  PubMed  CAS  Google Scholar 

  58. Fowler SC, Zarcone TJ, Vorontsova E, Chen R. Motor and associative deficits in D2 dopamine receptor knockout mice. Int J Dev Neurosci. 2002;20:309–21.

    Article  PubMed  CAS  Google Scholar 

  59. Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nature Med. 2004;10:816–20.

    Article  PubMed  CAS  Google Scholar 

  60. Burright EN, Davidson JD, Duvick LA, Koshy B, Zoghbi HY, Orr HT. Identification of a self-association region within the SCA1 gene product, ataxin-1. Hum Mol Genet. 1997;6:513–8.

    Article  PubMed  CAS  Google Scholar 

  61. Davidson JD, Riley B, Burright EN, Duvick LA, Zoghbi HY, Orr HT. Identification and characterization of an ataxin-1-interacting protein: A1Up, a ubiquitin-like nuclear protein. Hum Mol Genet. 2000;9:2305–12.

    PubMed  CAS  Google Scholar 

  62. Lim J, Hao T, Shaw C, Patel AJ, Szabo G, Rual JF, et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell. 2006;125:801–14.

    Article  PubMed  CAS  Google Scholar 

  63. Hong S, Ka S, Kim S, Park Y, Kang S. p80 coilin, a coiled body-specific protein, interacts with ataxin-1, the SCA1 gene product. Biochem Biophys Acta. 2003;1638:35–42.

    PubMed  CAS  Google Scholar 

  64. Koshy B, Matilla T, Burright EN, Merry DE, Fischbeck KH, Orr HT, et al. Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3-phosphate dehydrogenase. Hum Mol Genet. 1996;5:1311–8.

    Article  PubMed  CAS  Google Scholar 

  65. Hong S, Kim SJ, Ka S, Choi I, Kang S. USP7, a ubiquitin-specific protease, interacts with ataxin-1, the SCA1 gene product. Mol Cell Neurosci. 2002;20:298–306.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antoni Matilla-Dueñas or Paola Giunti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matilla-Dueñas, A., Goold, R. & Giunti, P. Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1. Cerebellum 7, 106–114 (2008). https://doi.org/10.1007/s12311-008-0009-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0009-0

Key words

Navigation