Skip to main content
Log in

Development of Cerebellar GABAergic Interneurons: Origin and Shaping of the “Minibrain” Local Connections

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellar circuits comprise a limited number of neuronal phenotypes embedded in a defined cytoarchitecture and generated according to specific spatio-temporal patterns. The local GABAergic network is composed of several interneuron phenotypes that play essential roles in information processing by modulating the activity of cerebellar cortical inputs and outputs. A major issue in the study of cerebellar development is to understand the mechanisms that underlie the generation of different interneuron classes and regulate their placement in the cerebellar architecture and integration in the cortico-nuclear network. Recent findings indicate that the variety of cerebellar interneurons derives from a single population of multipotent progenitors whose fate choices are determined by instructive environmental information. Such a strategy, which is unique for the cerebellum along the neuraxis, allows great flexibility in the control of the quality and quantity of GABAergic interneurons that are produced, thus facilitating the adaptive shaping of the cerebellar network to specific functional demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Alder J, Cho NK, Hatten ME (1996) Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17:389–399

    Article  PubMed  CAS  Google Scholar 

  2. Wingate RJT (2001) The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11:82–88

    Article  PubMed  CAS  Google Scholar 

  3. Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17–24

    Article  PubMed  CAS  Google Scholar 

  4. Wang VY, Rose MF, Zoghbi H (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43

    Article  PubMed  CAS  Google Scholar 

  5. Englund CM, Kowalczyk T, Daza RAM, Dagan A, Lau C, Rose MF et al (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26:9184–9195

    Article  PubMed  CAS  Google Scholar 

  6. Fink AJ, Englund C, Daza RAM, Pham D, Lau C, Nivison M et al (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26:3066–3076

    Article  PubMed  CAS  Google Scholar 

  7. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV et al (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47:201–213

    Article  PubMed  CAS  Google Scholar 

  8. Hoshino M (2006) Molecular machinery governing GABAergic neuron specification in the cerebellum. Cerebellum 5:193–198

    Article  PubMed  CAS  Google Scholar 

  9. Miale IR, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Expl Neurol 4:277–296

    Article  CAS  Google Scholar 

  10. Altman J, Bayer SA (1997) Development of the cerebellar system in relation to its evolution, structure and funtions. CRC, Boca Raton

    Google Scholar 

  11. Sekerkovà G, Ilijic E, Mugnaini E (2004a) Bromodeoxyuridine administered during neurogenesis of the projection neurons causes cerebellar defects in rats. J Comp Neurol 470:221–239

    Article  PubMed  Google Scholar 

  12. Sekerkovà G, Ilijic E, Mugnaini E (2004b) Time of origin of unipolar brush cells in the rat cerebellum as observed by prenatal bromodeoxyuridine labeling. Neuroscience 127:845–858

    Article  PubMed  Google Scholar 

  13. Surchev L, Nazwar TA, Weisheit G, Schilling K (2007) Developmental increase of total cell numbers in the murine cerebellum. Cerebellum 6(4):315–320

    Article  Google Scholar 

  14. Ramón y Cajal S (1911) Histologie du système nerveux de l’homme et des vertébrés. Maloine, Paris

    Google Scholar 

  15. Palay SL, Chan-Palay V (1974) Cerebellar cortex. Cytology and organization. Springer, Berlin

    Google Scholar 

  16. Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 32:375–475

    Article  Google Scholar 

  17. Bastianelli E (2003) Distribution of calcium-binding proteins in the cerebellum. Cerebellum 2:242–262

    Article  PubMed  CAS  Google Scholar 

  18. Weyer A, Schilling K (2003) Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res 73:400–409

    Article  PubMed  CAS  Google Scholar 

  19. Leto K, Carletti B, Williams IM, Magrassi L, Rossi F (2006) Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci 26:11682–11694

    Article  PubMed  CAS  Google Scholar 

  20. Altman J (1972) Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol 145:353–398

    Article  PubMed  CAS  Google Scholar 

  21. Hallonet ME, Teillet MA, Le Douarin NM (1990) A new approach to the development of the cerebellum provided by the quail-chick marker system. Development 108:19–31

    PubMed  CAS  Google Scholar 

  22. Hallonet ME, Le Douarin NM (1993) Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras. Eur J Neurosci 5:1145–1155

    Article  PubMed  CAS  Google Scholar 

  23. Gao WQ, Hatten ME (1994) Immortalizing oncogenes subvert the establishement of granule cell identity in developing cerebellum. Development 120:1059–1070

    PubMed  CAS  Google Scholar 

  24. Napieralski JA, Eisenman LM (1993) Developmental analysis of the external granular layer in the meander tail mutant mouse: do cerebellar microneurons have independent progenitors? Dev Dyn 197:244–254

    PubMed  CAS  Google Scholar 

  25. Alvarez Otero R, Sotelo C, Alvarado-Mallart RM (1993) Chick/quail chimeras with partial cerebellar grafts: an analysis of the origin and migration of cerebellar cells. J Comp Neurol 333:597–615

    Article  PubMed  CAS  Google Scholar 

  26. Fujita S, Simada M, Nakanuna T (1966) 3H-thymidine autoradiographic studies on the cell proliferation and differentiation in the external and internal granular layers of the mouse cerebellum. J Comp Neurol 128:191–209

    Article  PubMed  CAS  Google Scholar 

  27. Zhang L, Goldman JE (1996a) Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron 16:47–54

    Article  PubMed  Google Scholar 

  28. Milosevich A, Goldman JE (2002) Progenitors in the postnatal cerebellar white matter are antigenically heterogeneous. J Comp Neurol 452:192–203

    Article  Google Scholar 

  29. Milosevich A, Goldman JE (2004) Potential of progenitors from postnatal cerebellar neuroepithelium and white matter: lineage specified vs multipotent fate. Mol Cell Neurosci 26:342–353

    Article  Google Scholar 

  30. Mathis L, Bonnerot C, Puelles L, Nicolas JF (1997) Retrospective clonal analysis of the cerebellum using genetic laacZ/lacZ mousemosaics. Development 124:4089–4104

    PubMed  CAS  Google Scholar 

  31. Mathis L, Nicolas J (2003) Progressive restriction of cell fates in relation to neuroepithelial cell mingling in the mouse cerebellum. Dev Biol 258:20–31

    Article  PubMed  CAS  Google Scholar 

  32. Pascual M, Abrasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CVE et al (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Pnas 104:5193–5198

    Article  PubMed  CAS  Google Scholar 

  33. Maricich SM, Herrup K (1999) Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol 41:281–294

    Article  PubMed  CAS  Google Scholar 

  34. Weisheit G, Gliem M, Endl E, Pfeffer PL, Busslinger M, Schilling K (2006) Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons. Eur J Neurosci 24:466–478

    Article  PubMed  Google Scholar 

  35. Altman J, Bayer SA (1978) Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol 179:23–48

    Article  PubMed  CAS  Google Scholar 

  36. Pfeffer PL, Payer B, reim G, di Magliano MP, Busslinger M (2002) The activation and maintenance of Pax2 expression at the mid-hindbrain boundary is controlled by separate enhancers. Development 129:307–318

    PubMed  CAS  Google Scholar 

  37. Yamanaka H, Yanagawa Y, Obata K (2004) Development of stellate and basket cells and their apoptosis in mouse cerebellar cortex. Neurosci Res 50:13–22

    Article  PubMed  Google Scholar 

  38. Jankovski A, Rossi F, Sotelo C (1996) Neuronal precursors in the postnatal mouse cerebellum are fully committed cells: evidence from heterochronic transplantation. Eur J Neurosci 8:2308–2320

    Article  PubMed  CAS  Google Scholar 

  39. Carletti B, Grimaldi P, Magrassi L, Rossi F (2002) Specification of cerebellar progenitors following heterotopic/heterochronic transplantation to the embryonic CNS in vivo and in vitro. J Neurosci 22:7132–7146

    PubMed  CAS  Google Scholar 

  40. Grimaldi P, Carletti B, Magrassi L, Rossi F (2005) Fate restriction and developmental potential of cerebellar progenitors. Transplantation studies in the developing CNS. Prog Brain Res 148:57–68

    Article  PubMed  Google Scholar 

  41. Pearson BJ, Doe CQ (2004) Specification of temporal identity in the developing nervous system. Annu Rev Cell Dev Biol 20:619–647

    Article  PubMed  CAS  Google Scholar 

  42. McConnell SK, Kaznovsky CE (1991) Cell cycle dependence of laminar determination in developing neocortex. Science 254:282–285

    Article  PubMed  CAS  Google Scholar 

  43. Bohner AP, Akers RM, McConnell SK (1997) Induction of deep layer cortical neurons in vitro. Development 124:915–923

    PubMed  CAS  Google Scholar 

  44. Desai AR, McConnell SK (2000) Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127:2863–2872

    PubMed  CAS  Google Scholar 

  45. Valcanis H, Tan SS (2003) Layer specification of transplanted interneurons in developing mouse neocortex. J Neurosci 23:5113–5122

    PubMed  CAS  Google Scholar 

  46. Baader SL, Bergmann M, Mertz K, Fox PA, Gerdes J, Oberdick J et al (1999) The differentiation of cerebellar interneurons is independent of their mitotic history. Neurosci 90:1243–1254

    Article  CAS  Google Scholar 

  47. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB et al (2005) Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 8:723–729

    Article  PubMed  CAS  Google Scholar 

  48. Klein C, Butt SJ, Machold RP, Johnson JE, Fishell G (2005) Cerebellum- and forebrain-derived stem cells possess intrinsic regional character. Development 132:4497–4508

    Article  PubMed  CAS  Google Scholar 

  49. Pons S, Trejo JL, Martinez-Morales JR, Marti E (2001) Vitronectin regulates sonic hedgehog activity during cerebellum development through CREB phosphorylation. Development 128:1481–1492

    PubMed  CAS  Google Scholar 

  50. Baier C, Baader SL, Jankowski J, Gieselmann V, Schilling K, Rauch U et al (2007) Hyaluronan is organized into fiber-like structures along migratory pathways in the developing mouse cerebellum. Matrix Biology 26:348–358

    Article  PubMed  CAS  Google Scholar 

  51. Gliem M, Weisheit G, Mertz KD, Endl E, Oberdick J, Schilling K (2006) Expression of classical cadherins in the cerebellar anlage: quantitative and functional aspects. Mol Cell Neurosci 33:447–458

    Article  PubMed  CAS  Google Scholar 

  52. Zanjani SH, Selimi F, Vogel MW, Haeberlé AM, Boeuf J, Mariani J et al (2006) Survival of interneurons and parallel fiber synapses in a cerebellar cortex deprived of Purkinje cells: studies in the double mutant mouse Grid2Lc/+ ;Bax(−/−). J Comp Neurol 497:622–635

    Article  PubMed  Google Scholar 

  53. Guijarro P, Simo S, Pascual M, Albasolo I, Del Rio JA, Soriano E (2006) Netrin1 exerts a chemorepulsive effect on migratine cerebellar interneurons in a Dcc-independent way. Mol Cell Neurosci 33:389–400

    Article  PubMed  CAS  Google Scholar 

  54. Manzano J, Cuadrado M, Morte B, Bernal J (2007) Influence of thyroid hormone and thyroid hormone receptors in the generation of cerebellar gamma-aminobutyric acid-ergic interneurons from precursor cells. Endocrinology 148:5746–5751

    Article  PubMed  CAS  Google Scholar 

  55. Bartolini A, Leto K, Ghidinelli S, Rossi F (2008) The development of cerebellar GABAergic interneurons is regulated by environmental cues. Fens Abstr 4,009.1

    Google Scholar 

  56. Carletti B, Rossi F (2008) Neurogenesis in the cerebellum. Neuroscientist 14:91–100

    Article  PubMed  Google Scholar 

  57. Lee KJ, Jessell TM (1999) The specification of dorsal cell fates in the vertebrate central nervous system. Annu Rev Neurosci 22:261–294

    Article  PubMed  CAS  Google Scholar 

  58. Glasgow SM, Henke RM, MacDonald RJ, Wright CVE, Johnson JE (2005) Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development 132:5461–5469

    Article  PubMed  CAS  Google Scholar 

  59. Dullin JP, Locker M, Robach M, Henningfeld KA, Parain K, Afelik S et al (2007) Ptf1a triggers GABAergic neuronal cell fates in the retina. BMC Dev Biol 7:110

    Article  PubMed  Google Scholar 

  60. Hori K, Cholewa-Waclaw J, Nakada Y, Glasgow SM, Masui T, Henke RM et al (2008) A nonclassical bHLH Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling. Genes Dev 22:166–178

    Article  PubMed  CAS  Google Scholar 

  61. Helms AW, Jonson JE (2003) Specification of dorsal spinal cord interneurons. Curr Opin Neurobiol 13:42–49

    Article  PubMed  CAS  Google Scholar 

  62. Flames N, Pla R, Gelman DM, Rubenstein JL, Puelles L, Marin O (2007) Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcription codes. J Neurosci 27:9682–9695

    Article  PubMed  CAS  Google Scholar 

  63. Fogarty M, Grist M, Gelman D, Marin O, Pachnis V, Kessaris N (2007) Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J Neurosci 27:10935–10946

    Article  PubMed  CAS  Google Scholar 

  64. Wonders CP, Taylor L, Welagen J, Mbata IC, Xiang JZ, Anderson SA (2008) A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. Dev Biol 314:127–136

    Article  PubMed  CAS  Google Scholar 

  65. Miyoshi G, Butt SJ, Takebayashi H, Fishell G (2007) Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expression precursors. J Neurosci 27:7786–7798

    Article  PubMed  CAS  Google Scholar 

  66. Rymar VV, Sadikot AF (2007) Laminar fate of cortical GABAergic interneurons is dependent on both birthdate and phenotype. J Comp Neurol 50:369–380

    Article  Google Scholar 

  67. Kelsch W, Mosley CP, Lin C-W, Lois C (2007) Distinct Mammalian Precursors are committed to generate neurons with defined dendtritic projection patterns. PLoS Biol 5:2501–2512

    CAS  Google Scholar 

  68. Ninkovic J, Mori T, Gotz M (2007) Distinct modes of neuron addition in adult mouse neurogenesis. J Neurosci 27:10906–10911

    Article  PubMed  CAS  Google Scholar 

  69. Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317:381–384

    Article  PubMed  CAS  Google Scholar 

  70. Young KM, Fogarty M, Kessaris N, Richardson WD (2007) Subventricular zone stem cells are heterogeneous with respect to their origins and neurogenic fates in the adult olfactory bulb. J Neurosci 27:8286–8296

    Article  PubMed  CAS  Google Scholar 

  71. De Marchis S, Bovetti S, Carletti B, Hsieh YC, Garzotto D, Peretto P et al (2007) Generation of distrinct types of periglomerular olfactory bulb interneurons during development and in adult mice: implication for intrinsic properties of the subventricular zone progenitor population. J Neurosci 27:657–664

    Article  PubMed  Google Scholar 

  72. Bovetti S, Peretto P, Fasolo A, De Marchis S (2007) Spatio-temporal specification of olfactory bulb interneurons. J Mol Histol 38:563–569

    Article  PubMed  Google Scholar 

  73. Batista-Brito R, Close J, Machold R, Fishell G (2008) The distinct temporal origins of olfactory bulb interneuron subtypes. J Neurosci 28:3966–3975

    Article  PubMed  CAS  Google Scholar 

  74. Rubenstein JLR, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior 2:255–267

    Article  CAS  Google Scholar 

  75. Levitt P, Livesey KL, Powell EM (2004) Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci 27:400–406

    Article  PubMed  CAS  Google Scholar 

  76. Levitt P (2005) Disruption of interneuron development. Epilepsia 46:22–28

    Article  PubMed  CAS  Google Scholar 

  77. Neki A, Ohishi H, Kaneko T, Shigemoto R, Nakanishi S, Mizuno N (1996) Metabotropic glutamate receptors mGluR2 and mGluR5 are expressed in two non-overlapping populations of Golgi cells in the rat cerebellum. Neuroscience 75:815–826

    Article  PubMed  CAS  Google Scholar 

  78. Watanabe D, Inokawa H, Hashimoto K, Suzuki N, Kano M, Shigemoto R et al (1998) Ablation of cerebellar Golgi cells distrupts synaptic integration involving GABA inhibition and NMDA receptor activation in motor coordination. Cell 95:17–27

    Article  PubMed  CAS  Google Scholar 

  79. Singec I, Knoth R, Ditter M, Frotscher M, Volk B (2003) Neurogranin expression by cerebellar neurons in rodents and non-human primates. J Comp Neurol 459:278–289

    Article  PubMed  CAS  Google Scholar 

  80. Simat M, Parpan F, Fritschy J-M (2007) Heterogeneity of glycinergic and GABAergic interneurons in the granule cell layer of mouse cerebellum. J Comp Neurol 500:71–83

    Article  PubMed  CAS  Google Scholar 

  81. Dino MR, Willard FH, Mugnaini E (1999) Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex. J Neurocytol 28:99–123

    Article  PubMed  CAS  Google Scholar 

  82. Geurts FJ, Timmermans JP, Shigemoto R, De Schutter E (2001) Morphological and neurochemical differentiation of large granular layer interneurons in the adult rat cerebellum. Neuroscience 104:499–512

    Article  PubMed  CAS  Google Scholar 

  83. Ino H (2004) Immunohistochemical characterization of the orphan nuclear receptor RORα in the mouse neurvous system. J Histochem Cytochem 52:311–323

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Ministero dell’Università e della Ricerca Scientifica e Tecnologica (PRIN, nr 2005055095); Ministero della Salute (Nuove terapie cellulari per le malattie neurodegenerative, nr 533F/G1 to FR & LM), European Community (nr 512039); Compagnia di San Paolo (Neurotransplant Project, 2004.2019–2007.0660), Istituto Superiore di Sanità (Convenzione 530/F-A5 to FR and LM); Regione Piemonte (Proj. A14/05 and 865/2006); University of Turin; Ketty Leto is supported by a “Lagrange Project” PhD fellowship from the Cassa di Risparmio di Torino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketty Leto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leto, K., Bartolini, A. & Rossi, F. Development of Cerebellar GABAergic Interneurons: Origin and Shaping of the “Minibrain” Local Connections. Cerebellum 7, 523–529 (2008). https://doi.org/10.1007/s12311-008-0079-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0079-z

Keywords

Navigation