Skip to main content
Log in

Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum is involved in learning and memory of sensory motor skills. However, the way this process takes place in local microcircuits is still unclear. The initial proposal, casted into the Motor Learning Theory, suggested that learning had to occur at the parallel fiber–Purkinje cell synapse under supervision of climbing fibers. However, the uniqueness of this mechanism has been questioned, and multiple forms of long-term plasticity have been revealed at various locations in the cerebellar circuit, including synapses and neurons in the granular layer, molecular layer and deep-cerebellar nuclei. At present, more than 15 forms of plasticity have been reported. There has been a long debate on which plasticity is more relevant to specific aspects of learning, but this question turned out to be hard to answer using physiological analysis alone. Recent experiments and models making use of closed-loop robotic simulations are revealing a radically new view: one single form of plasticity is insufficient, while altogether, the different forms of plasticity can explain the multiplicity of properties characterizing cerebellar learning. These include multi-rate acquisition and extinction, reversibility, self-scalability, and generalization. Moreover, when the circuit embeds multiple forms of plasticity, it can easily cope with multiple behaviors endowing therefore the cerebellum with the properties needed to operate as an effective generalized forward controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Notes on the nature of models used to test the learning rules

    In order to test the impact of the plasticity rules, they have been coupled to simplified cerebellar models [23] C. Casellato, A. Antonietti, J.A. Garrido, R.R. Carrillo, N.R. Luque, E. Ros, A. Pedrocchi, and E. D’Angelo [4]. Adaptive robotic control driven by a versatile spiking cerebellar network. PLoS One 9, e112265, [105] C. Casellato, A. Antonietti, J.A. Garrido, G. Ferrigno, E. D’Angelo, and A. Pedrocchi (2015). Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks. Front Comput Neurosci 9, 24. In the spiking cerebellar models, neurons are of the “integrate-and-fire” type, i.e., they have an RC membrane charging mechanism and a threshold for firing. The main properties of these neurons are to generate a linear frequency-intensity relationship in response to currents injected by synaptic inputs, to have a resting membrane potential or a basal firing frequency similar to real cells, and to show variations in firing during task processing reflecting the value ranges observed in vivo. Synaptic activation occurs through current injection into the model neurons and inputs from various neurons are integrated over the RC.

References

  1. J Albus. The theory of cerebellar function. Math Biosci.1971;25-61.

  2. Marr D. A theory of cerebellar cortex. J Physiol. 1969;202:437–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ito M, Kano M. "Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33:253–8.

    Article  CAS  PubMed  Google Scholar 

  4. D'Angelo E. The organization of plasticity in the cerebellar cortex: from synapses to control. Prog Brain Res. 2014;210:31–58.

    Article  PubMed  Google Scholar 

  5. Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci. 2012;13:619–35.

    Article  CAS  PubMed  Google Scholar 

  6. Hansel C, Linden DJ, D'Angelo E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci. 2001;4:467–75.

    CAS  PubMed  Google Scholar 

  7. Kawato M, Gomi H. A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern. 1992;68:95–103.

    Article  CAS  PubMed  Google Scholar 

  8. De Gruijl JR, Bazzigaluppi P, M.T. de Jeu. C.I. De Zeeuw. Climbing fiber burst size and olivary sub-threshold oscillations in a network setting. PLoS Comput Biol, (United States), 2012;e100. 2814.

  9. Houk JC, Keifer J, Barto AG. Distributed motor commands in the limb premotor network. Trends Neurosci, (England). 1993;27-33.

  10. Llinas R, Lang EJ, Welsh JP. The cerebellum, LTD, and memory: alternative views. Learn Mem. 1997;3:445–55.

    Article  CAS  PubMed  Google Scholar 

  11. Keating JG, Thach WT. Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. J Neurophysiol. 1995;73:1329–40.

    CAS  PubMed  Google Scholar 

  12. Bengtsson F, Hesslow G. Cerebellar control of the inferior olive. Cerebellum (Norway). 2006; 7-14.

  13. De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ. Microcircuitry and function of the inferior olive. Trends Neurosci (England). 1998;391-400.

  14. Van Der Giessen RS, Koekkoek SK, van Dorp S, De Gruijl JR, Cupido A, Khosrovani S, et al. Role of olivary electrical coupling in cerebellar motor learning. Neuron. 2008;58:599–612.

    Article  Google Scholar 

  15. D'Angelo E. Neural circuits of the cerebellum: hypothesis for function. Journal of Integr Neurosci. 2011. in press.

  16. D'Angelo E, Mazzarello P, Prestori F, Mapelli J. , S. Solinas, P. Lombardo et al. The cerebellar network: From structure to function and dynamics. Brain Res Rev. 2010.

  17. Ohtsuki G, Piochon C, Hansel C. Climbing fiber signaling and cerebellar gain control. Front Cell Neurosci. 2009;3:4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Medina JF, Mauk MD. Simulations of cerebellar motor learning: computational analysis of plasticity at the mossy fiber to deep nucleus synapse. J Neurosci. 1999;19:7140–51.

    CAS  PubMed  Google Scholar 

  19. Yang Y, Lisberger SG. Interaction of plasticity and circuit organization during the acquisition of cerebellum-dependent motor learning. Elife. 2013;2:e01574.

    PubMed  PubMed Central  Google Scholar 

  20. Hoffland BS, Bologna M, Kassavetis P, Teo JT, Rothwell JC, Yeo CH, et al. Cerebellar theta burst stimulation impairs eyeblink classical conditioning. J Physiol. 2012;590:887–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Monaco J, Casellato C, Koch G, D'Angelo E. Cerebellar theta burst stimulation dissociates memory components in eyeblink classical conditioning. Eur J Neurosci. 2014;40:3363–70.

    Article  CAS  PubMed  Google Scholar 

  22. Solinas S, Nieus T, D'Angelo E. A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci. 2010;4:12.

    PubMed  PubMed Central  Google Scholar 

  23. Casellato C, Antonietti A, Garrido JA, Carrillo RR, Luque NR, Ros E, et al. Adaptive robotic control driven by a versatile spiking cerebellar network. PLoS One. 2014;9:e112265.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Casellato C, Garrido JA, Franchin C, Ferrigno G, D’Angelo E, Pedrocchi A. Brain-inspired sensorimotor robotic platform: learning in cerebellum-driven movement tasks through a cerebellar realistic model. Challenges in Neuroengineering - SSCN - NCTA. 2013. Villamuora, Algarve - Portugal.

  25. Casellato C, Pedrocchi A, Garrido JA, Luque NR, Ferrigno G, D'Angelo E et al. An integrated motor control loop of a human-like robotic arm: feedforward, feedback and cerebellum-based learning. Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on. 2012;562-567.

  26. Garrido JA, Luque NR, D'Angelo E, Ros E. Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation. Front Neural Circuits. 2013;7:159.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Garrido JA, Ros E, D'Angelo E. Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study. Front Comput Neurosci. 2013;7:64.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Luque NR, Garrido JA, Carrillo RR, D'Angelo E, Ros E. Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation. Front Comput Neurosci. 2014;8:97.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mapelli L, Pagani M, Garrido JA, D'Angelo E (2015) .Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit. Front. Cell. Neurosci. 9.

  30. D'Angelo E, Rossi P, Armano S, Taglietti V. Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. J Neurophysiol. 1999;81:277–87.

    PubMed  Google Scholar 

  31. D'Angelo E, Rossi P, Gall D, Prestori F, Nieus T, Maffei A, et al. Long-term potentiation of synaptic transmission at the mossy fiber-granule cell relay of cerebellum. Prog Brain Res. 2005;148:69–80.

    Article  PubMed  Google Scholar 

  32. Sola E, Prestori F, Rossi P, Taglietti V, D'Angelo E. Increased neurotransmitter release during long-term potentiation at mossy fibre-granule cell synapses in rat cerebellum. J Physiol. 2004;557:843–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D'Errico A, Prestori F, D'Angelo E. Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input. J Physiol. 2009;587:5843–57.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gall D, Prestori F, Sola E, D'Errico A, Roussel C, Forti L, et al. Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. J Neurosci. 2005;25:4813–22.

    Article  CAS  PubMed  Google Scholar 

  35. Diwakar S, Lombardo P, Solinas S, Naldi G, D'Angelo E. Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PLoS ONE. 2011;6:e21928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roggeri L, Rivieccio B, Rossi P, D'Angelo E. Tactile stimulation evokes long-term synaptic plasticity in the granular layer of cerebellum. J Neurosci. 2008;28:6354–9.

    Article  CAS  PubMed  Google Scholar 

  37. Maffei A, Prestori F, Rossi P, Taglietti V, D'Angelo E. Presynaptic current changes at the mossy fiber-granule cell synapse of cerebellum during LTP. J Neurophysiol. 2002;88:627–38.

    PubMed  Google Scholar 

  38. Maffei A, Prestori F, Shibuki K, Rossi P, Taglietti V, D'Angelo E. NO enhances presynaptic currents during cerebellar mossy fiber-granule cell LTP. J Neurophysiol. 2003;90:2478–83.

    Article  CAS  PubMed  Google Scholar 

  39. Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.

    CAS  PubMed  Google Scholar 

  40. Prestori F, Bonardi C, Mapelli L, Lombardo P, Goselink R, De Stefano ME, et al. Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage. PLoS One. 2013;8:e64828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Robberechts Q, Wijnants M, Giugliano M, De Schutter E. long-term depression at parallel fiber to golgi cell synapses. J Neurophysiol. 2010

  42. Crepel F, Jaillard D. Protein kinases, nitric oxide and long-term depression of synapses in the cerebellum. Neuroreport. 1990;1:133–6.

    Article  CAS  PubMed  Google Scholar 

  43. Shibuki K, Okada D. Cerebellar long-term potentiation under suppressed postsynaptic Ca2+ activity. Neuroreport. 1992;3:231–4.

    Article  CAS  PubMed  Google Scholar 

  44. Qiu DL, Knöpfel T. An NMDA receptor/nitric oxide cascade in presynaptic parallel fiber-Purkinje neuron long-term potentiation. J Neurosci. 2007;27:3408–15.

    Article  CAS  PubMed  Google Scholar 

  45. Coesmans M, Weber JT, De Zeeuw CI, Hansel C. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron. 2004;44:691–700.

    Article  CAS  PubMed  Google Scholar 

  46. Lev-Ram V, Wong ST, Storm DR, Tsien RY. A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci U S A. 2002;99:8389–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hartell NA. Parallel fiber plasticity. Cerebellum. 2002;1:3–18.

    Article  CAS  PubMed  Google Scholar 

  48. Wang YT, Linden DJ. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron. 2000;25:635–47.

    Article  CAS  PubMed  Google Scholar 

  49. Xia J, Chung HJ, Wihler C, Huganir RL, Linden DJ. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron. 2000;28:499–510.

    Article  CAS  PubMed  Google Scholar 

  50. Ito M. Neural design of the cerebellar motor control system. Brain Res. 1972;40:81–4.

    Article  CAS  PubMed  Google Scholar 

  51. Ito M. Long-term depression. Annu Rev Neurosci. 1989;12:85–102.

    Article  CAS  PubMed  Google Scholar 

  52. Ramakrishnan KB, D'Angelo E. Theta-Sensory input induced long-term potentiation (ltp) in purkinje cell layer of rat cerebellum. FENS Forum Neurosci (Barcelona, Spain) 2012.

  53. Shen Y, Hansel C, Linden DJ. Glutamate release during LTD at cerebellar climbing fiber-Purkinje cell synapses. Nat Neurosci. 2002;5:725–6.

    Article  CAS  PubMed  Google Scholar 

  54. Bender VA, Pugh JR, Jahr CE. Presynaptically expressed long-term potentiation increases multivesicular release at parallel fiber synapses. J Neurosci. 2009;29:10974–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Soler-Llavina GJ, Sabatini BL. Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat Neurosci. 2006;9:798–806.

    Article  CAS  PubMed  Google Scholar 

  56. Jörntell H, Ekerot CF. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron. 2002;34:797–806.

    Article  PubMed  Google Scholar 

  57. Kano M, Rexhausen U, Dreessen J, Konnerth A. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature. 1992;356:601–4.

    Article  CAS  PubMed  Google Scholar 

  58. Bidoret C, Ayon A, Barbour B, Casado M. Presynaptic NR2A-containing NMDA receptors implement a high-pass filter synaptic plasticity rule. Proc Natl Acad Sci U S A. 2009;106:14126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Casado M, Isope P, Ascher P. Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression. Neuron. 2002;33:123–30.

    Article  CAS  PubMed  Google Scholar 

  60. Piochon C, Levenes C, Ohtsuki G, Hansel C. Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum. J Neurosci. 2010;30:15330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rancillac A, Crépel F. Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum. J Physiol. 2004;554:707–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pugh JR, Raman IM. Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron. 2006;51:113–23.

    Article  CAS  PubMed  Google Scholar 

  63. Pugh JR, Raman IM. Nothing can be coincidence: synaptic inhibition and plasticity in the cerebellar nuclei. Trends Neurosci. 2009;32:170–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang W, Linden DJ. Long-term depression at the mossy fiber-deep cerebellar nucleus synapse. J Neurosci. 2006;26:6935–44.

    Article  CAS  PubMed  Google Scholar 

  65. Ouardouz M, Sastry B. Mechanisms underlying ltp of inhibitory synaptic transmission in the deep cerebellar nuclei. J Neurophysiol. 2000;84:1414–21.

    CAS  PubMed  Google Scholar 

  66. Ouardouz M, Sastry BR. Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. J Neurophysiol. 2000;84:1414–21.

    CAS  PubMed  Google Scholar 

  67. Morishita W, Sastry B. Postsynaptic mechanisms underlying long-term depression of gabaergic transmission in neurons of the deep cerebellar nuclei. J Neurophysiol. 1996;76:59–68.

    CAS  PubMed  Google Scholar 

  68. D'Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32:30–40.

    Article  PubMed  Google Scholar 

  69. D'Angelo E, Mazzarello P, Prestori F, Mapelli J, Solinas S, Lombardo P, et al. The cerebellar network: from structure to function and dynamics. Brain Res Rev. 2011;66:5–15.

    Article  PubMed  Google Scholar 

  70. Bagnall MW, du Lac S. A new locus for synaptic plasticity in cerebellar circuits. Neuron. 2006;51:5–7.

    Article  CAS  PubMed  Google Scholar 

  71. Masuda N, Amari S. A computational study of synaptic mechanisms of partial memory transfer in cerebellar vestibulo-ocular-reflex learning. J Comput Neurosci. 2008;24:137–56.

    Article  PubMed  Google Scholar 

  72. Medina JF, Mauk MD. Computer simulation of cerebellar information processing. Nat Neurosci. 2000;3(Suppl):1205–11.

    Article  CAS  PubMed  Google Scholar 

  73. Armano S, Rossi P, Taglietti V, D'Angelo E. Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum. J Neurosci. 2000;20:5208–16.

    CAS  PubMed  Google Scholar 

  74. Belmeguenai A, Hosy E, Bengtsson F, Pedroarena CM, Piochon C, Teuling E, et al. Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells. J Neurosci. 2010;30:13630–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schreurs BG, Gusev PA, Tomsic D, Alkon DL, Shi T. Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI. J Neurosci. 1998;18:5498–507.

    CAS  PubMed  Google Scholar 

  76. Aizenman CD, Linden DJ. Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nat Neurosci. 2000;3:109–11.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang W, Shin JH, Linden DJ. Persistent changes in the intrinsic excitability of rat deep cerebellar nuclear neurones induced by EPSP or IPSP bursts. J Physiol. 2004;561:703–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schweighofer N, Doya K, Lay F. Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control. Neuroscience. 2001;103:35–50.

    Article  CAS  PubMed  Google Scholar 

  79. Diwakar S, Magistretti J, Goldfarb M, Naldi G, D'Angelo E. Axonal Na + channels ensure fast spike activation and back-propagation in cerebellar granule cells. J Neurophysiol. 2009;101:519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Arleo A, Nieus T, Bezzi M, D'Errico A, D'Angelo E, Coenen OJ. How synaptic release probability shapes neuronal transmission: information-theoretic analysis in a cerebellar granule cell. Neural Comput. 2010;22:2031–58.

    Article  PubMed  Google Scholar 

  81. Nieus T, Sola E, Mapelli J, Saftenku E, Rossi P, D'Angelo E. LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. J Neurophysiol. 2006;95:686–99.

    Article  PubMed  Google Scholar 

  82. Najafi F, Medina JF. Beyond "all-or-nothing" climbing fibers: graded representation of teaching signals in Purkinje cells. Front Neural Circuits. 2013;7:115.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yang Y, Lisberger SG. Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration. Nature. 2014;510:529–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee KH, Mathews PJ, Reeves AM, Choe KY, Jami SA, Serrano RE, et al. Circuit mechanisms underlying motor memory formation in the cerebellum. Neuron. 2015;86:529–40.

    Article  CAS  PubMed  Google Scholar 

  85. Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Hausser M, et al. Cerebellar LTD and pattern recognition by Purkinje cells. Neuron. 2007;54:121–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. D'Angelo E, Koekkoek SK, Lombardo P, Solinas S, Ros E, Garrido J, et al. Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience. 2009;162:805–15.

    Article  PubMed  Google Scholar 

  87. Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.

    Article  CAS  PubMed  Google Scholar 

  88. Smith MA, Ghazizadeh A, Shadmehr R. Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol. 2006;4:e179.

    Article  PubMed  PubMed Central  Google Scholar 

  89. E. D'Angelo S. Casali. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Frontiers in Neural Circuits.2013;6.

  90. Attwell PJE, Cooke SF, Yeo CH. Cerebellar function in consolidation of a motor memory. Neuron. 2002;34:1011–20.

    Article  CAS  PubMed  Google Scholar 

  91. Cooke SF, Attwell PJ, Yeo CH. Temporal properties of cerebellar-dependent memory consolidation. J Neurosci. 2004;24:2934–41.

    Article  CAS  PubMed  Google Scholar 

  92. Attwell PJE, Rahman S, Yeo CH. Acquisition of eyeblink conditioning is critically dependent on normal function in cerebellar cortical lobule HVI. J Neurosci. 2001;21:5715–22.

    CAS  PubMed  Google Scholar 

  93. De Zeeuw CI, Yeo CH. Time and tide in cerebellar memory formation. Curr Opin Neurobiol. 2005;15:667–74.

    Article  PubMed  Google Scholar 

  94. Boyden ES, Katoh A, Raymond JL. Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci. 2004;27:581–609.

    Article  CAS  PubMed  Google Scholar 

  95. Márquez-Ruiz J, Cheron G. Sensory stimulation-dependent plasticity in the cerebellar cortex of alert mice. PLoS One. 2012;7:e36184.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yamazaki T, Tanaka S. Neural modeling of an internal clock. Neural Comput. 2005;17:1032–58.

    Article  PubMed  Google Scholar 

  97. Yamazaki T, Tanaka S. The cerebellum as a liquid state machine. Neural Netw. 2007;20:290–7.

    Article  PubMed  Google Scholar 

  98. Yamazaki T, Tanaka S. Computational models of timing mechanisms in the cerebellar granular layer. Cerebellum. 2009;8:423–32.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Masuda N, Amari S. A computational study of synaptic mechanisms of partial memory transfer in cerebellar vestibulo-ocular-reflex learning. J Comput Neurosci. 2008;24:137–56.

    Article  PubMed  Google Scholar 

  100. Pugh J, Raman I. Potentiation of mossy NMDA receptor activation followed by postinhibitory rebound current. Neuron. 2006;51:113–23.

    Article  CAS  PubMed  Google Scholar 

  101. Racine R, Wilson D, Gingell R, Sunderland D. Long-term potentiation in the interpositus and vestibular nuclei in the rat. Exp. Brain Res. 1986;63:158–62.

    CAS  Google Scholar 

  102. Yamazaki T, Nagao S. A computational mechanism for unified gain and timing control in the cerebellum. PLoS ONE. 2012;7:e33319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yamazaki T, Tanaka S. A spiking network model for passage-of-time representation in the cerebellum. Eur J Neurosci. 2007;26:2279–92.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.

    Article  CAS  PubMed  Google Scholar 

  105. Casellato C, Antonietti A, Garrido JA, Ferrigno G, D'Angelo E, Pedrocchi A. Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks. Front Comput Neurosci. 2015;9:24.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

The authors declare that there is no actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egidio D’Angelo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Angelo, E., Mapelli, L., Casellato, C. et al. Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning. Cerebellum 15, 139–151 (2016). https://doi.org/10.1007/s12311-015-0711-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0711-7

Keywords

Navigation