Elsevier

Brain Research

Volume 593, Issue 2, 16 October 1992, Pages 145-158
Brain Research

Research report
Glutamate immunoreactive terminals in the lateral amygdaloid nucleus: a possible substrate for emotional memory

https://doi.org/10.1016/0006-8993(92)91303-VGet rights and content
Under a Creative Commons license
open archive

Abstract

The ultrastructure and synaptic associations of terminals immunoreactive for l-glutamate (Glu) were examined in the lateral nucleus of the amygdala (AL). All results reported here involved tissue fixed only with paraformaldehyde. The specificity of the antiserum with paraformaldehyde fixation conditions was assessed and confirmed by immuno-dot blot analysis: the reactivity of anti-Glu to glutamic acid was at least 1,000 times greater than the reactivity to other amino acids. At the light microscopic level, Glu-immunoreactive punctate processes and somata were present in AL. At the electron microscopic level, many Glu-immunoreactive terminals were identified. Data analysis was performed on 365 of these labeled terminals. Glu-immunoreactive terminals were 0.3–1.5 μm in diameter and contained numerous small, clear vesicles as well as mitochondria. Many (77%) of the terminals analyzed had morphologically identifiable synaptic specializations. Most (90%) of the Glu-immunoreactive terminals with synaptic specializations formed asymmetric synapses on spines or small dendrites; synaptic specializations on soma or proximal dendrites were rarely seen (< 1%). Glu-immunoreactive terminals were qualitatively compared to terminals in AL labeled with two other antisera: anti-glutaminase, a marker for the enzyme that catalyzes the conversion of glutamine to the releasable or transmitter form of Glu, and anti-γ-aminobutyric acid (anti-GABA), a marker for the major inhibitory amino acid transmitter in the brain. Terminals immunoreactive for glutaminase, like those immunoreactive for Glu, formed mostly asymmetric synaptic specializations on spines or small dendrites. In contrast, GABA-immunoreactive terminals usually formed symmetric synapses on soma or proximal dendrites and were never observed to form asymmetric axo-spinous contacts. Although Glu is a metabolic precursor to GABA, these data indicate that the majority of Glu-immunoreactive terminals reflect the site of synthesis and release of Glu and not of GABA. In addition, these results provide morphological evidence that Glu plays a role in excitatory neurotransmission at synapses in AL and support the growing body of data implicating excitatory amino acid-mediated synaptic plasticity in-emotional learning and memory processes in AL.

Keywords

Amygdala
Glutamate
Immunocytochemistry
Emotion
Memory
Plasticity

Cited by (0)