Trends in Neurosciences
Volume 16, Issue 11, November 1993, Pages 480-487
Journal home page for Trends in Neurosciences

Review
Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation

https://doi.org/10.1016/0166-2236(93)90081-VGet rights and content

Abstract

In many brain areas, including the cerebellar cortex, neocortex, hippocampus, striatum and nucleus accumbens, brief activation of an excitatory pathway can produce long-term depression (LTD) of synaptic transmission. In most preparations, induction of LTD has been shown to require a minimum level of postsynaptic depolarization and a rise in the intracellular Ca2+ concentration [Ca2+]i in the postsynaptic neurone. Thus, induction conditions resemble those described for the initiation of associative long-term potentiation (LTP). However, data from structures susceptible to both LTD and LTP suggest that a stronger depolarization and a greater increase in [Ca2+]i are required to induce LTP than to initiate LTD. The source of Ca2+ appears to be less critical for the differential induction of LTP and LTD than the amplitude of the Ca2+ surge, since the activation of voltage- and ligand-gated Ca2+ conductances as well as the release from intracellular stores have all been shown to contribute to both LTD and LTP induction. LTD is induceable even at inactive synapses if [Ca2+]i is raised to the appropriate level by antidromic or heterosynaptic activation, or by raising the extracellular Ca2+ concentration [Ca2+]o. These conditions suggest a rule (called here the ABS rule) for activity-dependent synaptic modifications that differs from the classical Hebb rule and that can account for both homosynaptic LTD and LTP as well as for heterosynaptic competition and associativity.

References (90)

  • R.M. Mulkey et al.

    Neuron

    (1992)
  • R.L. Berry et al.

    Brain Res.

    (1989)
  • C.R. Bramham et al.

    Brain Res.

    (1987)
  • S. Chattarji et al.

    Brain Res.

    (1989)
  • B.R. Christie et al.

    Neuron

    (1992)
  • M. Ito et al.

    Neurosci. Lett.

    (1982)
  • T. Hirano

    Neurosci. Lett.

    (1990)
  • F. Crépel et al.

    Brain Res.

    (1988)
  • D.J. Linden et al.

    Neuron

    (1991)
  • J-H. Lin et al.

    Brain Res.

    (1993)
  • P. Stanton et al.

    Neurosci. Lett.

    (1991)
  • Z.A. Bortolotto et al.

    Eur. J. Pharmacol.

    (1992)
  • F. Zheng et al.

    Neuron

    (1992)
  • S. Pockett et al.

    Exp. Neurol.

    (1986)
  • W.B. Levy et al.

    Brain Res.

    (1979)
  • W.B. Levy et al.

    Neuroscience

    (1983)
  • J.E. Bradler et al.

    Neuroscience

    (1990)
  • B.R. Sastry et al.

    Life Sci.

    (1984)
  • J.R. Wickens et al.

    Neurosci. Lett.

    (1991)
  • W.C. Abraham et al.

    Brain Res.

    (1991)
  • N.L. Desmond et al.

    Brain Res.

    (1991)
  • S. Bröcher et al.

    Brain Res.

    (1992)
  • I. Llano et al.

    Neuron

    (1991)
  • T.V.P. Bliss et al.

    J. Physiol.

    (1973)
  • T.V.P. Bliss et al.

    Nature

    (1993)
  • Y. Frégnac et al.

    Soc. Neurosci. Abstr.

    (1990)
  • A. Artola et al.

    Nature

    (1990)
  • S. Bröcher et al.
  • S.M. Dudek et al.
  • J.C. Hirsch et al.

    J. Physiol.

    (1990)
  • P. Calabresi et al.

    J. Neurosci.

    (1992)
  • C.M.A. Pennartz et al.

    Eur. J. Neurosci.

    (1993)
  • T. Dunwiddie et al.

    J. Physiol.

    (1978)
  • P.K. Stanton et al.

    Nature

    (1989)
  • M. Ito et al.

    J. Physiol.

    (1982)
  • M. Kano et al.

    Nature

    (1987)
  • M. Sakurai

    J. Physiol.

    (1987)
  • F. Crépel et al.

    J. Physiol.

    (1991)
  • L.J. Bindman et al.

    J. Neurophysiol.

    (1988)
  • X. Xie et al.

    J. Neurophysiol.

    (1992)
  • M. Sakurai
  • J.C. Hirsch et al.

    Synapse

    (1992)
  • A. Artola et al.

    Soc. Neurosci. Abstr.

    (1992)
  • J.C. Hirsch et al.

    Exp. Brain Res.

    (1991)
  • P. Calabresi et al.

    Eur. J. Neurosci.

    (1992)
  • Cited by (0)

    View full text