Elsevier

Neuroscience

Volume 18, Issue 2, June 1986, Pages 261-290
Neuroscience

The molecular function of adrenal chromaffin granules: Established facts and unresolved topics

https://doi.org/10.1016/0306-4522(86)90154-5Get rights and content

First page preview

First page preview
Click to open first page preview

References (255)

  • BordierC.

    Phase separation of integral membrane proteins in Triton X-114 solution

    J. biol. Chem.

    (1981)
  • BowmanE.J.

    Comparison of the vacuolar membrane ATPase of Neurospora crassa with the mitochondrial and plasma membrane ATPases

    J. biol. Chem.

    (1983)
  • BucklandR.M. et al.

    Reconstitution of the Mg2+-ATPase of the chromaffin granule membrane

    FEBS Lett.

    (1979)
  • BucsicsA. et al.

    Substance P in the adrenal gland: origin and species distribution

    Neuropeptides

    (1981)
  • BurgoyneR.D.

    Mechanisms of secretion from adrenal chromaffin cells

    Biochim. biophys. Acta

    (1984)
  • CarmichaelS.W.

    Acetylcholinesterase activity of adrenal chromaffin vesicles

    Acta Histochem.

    (1984)
  • CarmichaelS.W.

    Adenylate cyclase activity of adrenal chromaffin vesicles

    Acta Histochem.

    (1984)
  • CiaranelloR.D. et al.

    Regulation of dopamine β-hydroxylase in rat adrenal glands

    J. biol. Chem.

    (1975)
  • CidonS. et al.

    ATP-driven proton fluxes across the membranes of secretory organelles

    J. biol. Chem.

    (1983)
  • CidonS. et al.

    A novel ATPase in the chromaffin granule membrane

    J. biol. Chem.

    (1983)
  • DeupreeJ.D. et al.

    Identification and characterization of the catecholamine transporter in chromafnn granules using [3H]-reserpine

    J. biol. Chem.

    (1984)
  • DilibertoE.J. et al.

    Mechanism of dopamine-β-hydroxylation. Semidehydroascorbate as the enzymic oxidation product of ascorbate

    J. biol. Chem.

    (1981)
  • DumontM. et al.

    Distinct distribution of immunoreactive dynorphin and leucine enkephalin in various populations of isolated adrenal chromaffin cells

    Life Sci.

    (1983)
  • DuongL.T. et al.

    Isolation and properties of cytochrome b561 from bovine adrenal chromaffin granules

    J. biol. Chem.

    (1982)
  • DuongL.T. et al.

    The asymmetric orientation of cytochrome b561 in bovine chromaffin granule membranes

    Archs Biochem. Biophys.

    (1984)
  • DuongL.T. et al.

    An identical cytochrome b561 is present in bovine adrenal chromaffin vesicles and posterior pituitary neurosecretory vesicles

    J. biol. Chem.

    (1984)
  • EidenL.E. et al.

    Primary cultures of bovine chromaffin cells synthesize and secrete vasoactive intestinal polypeptide (VIP)

    Life Sci.

    (1983)
  • EstabrookR.

    Low-temperature spectra of hemoproteins

    J. biol. Chem.

    (1956)
  • EvangelistaR. et al.

    A “trypsin-like” enzyme in adrenal chromaffin granules: a proenkephalin processing enzyme

    Biochem. biophys. Res. Commun.

    (1982)
  • FalkensammerG. et al.

    Cell-free and cellular synthesis of chromogranin A and B of bovine adrenal medulla

    Neuroscience

    (1985)
  • Fischer-ColbrieR. et al.

    Immunological studies on the distribution of chromogranin A and B in endocrine and nervous tissue

    Neuroscience

    (1985)
  • FlatmarkT. et al.

    Cytochrome b561 of the bovine adrenal chromaffin granules. Molecular weight and hydrodynamic properties in micellar solutions of Triton X-100

    Biochem. biophys. Res. Commun.

    (1981)
  • FlatmarkT. et al.

    Inhibition by N-ethylmaleimide of the MgATP-driven proton pump of chromaffin granules

    FEBS Lett.

    (1982)
  • FlatmarkT. et al.

    The assignment of the Ca2+-ATPase of chromaffin granules to the proton-translocating ATPase

    FEBS Lett.

    (1985)
  • FlatmarkT. et al.

    ATP-dependent H+-translocation in resealed chromaffin granule ghosts

    FEBS Lett.

    (1977)
  • FlatmarkT. et al.

    Electron carriers of bovine adrenal chromaffin granules

    Biochim. biophys. Acta

    (1971)
  • FlatmarkT. et al.

    Cytochrome b561 of the bovine adrenal chromaffin granules. A high-potential b-type cytochrome

    Biochim. biophys. Acta

    (1971)
  • FransonR.C. et al.

    Lysophospholipase activity of bovine adrenal medulla

    Biochim. biophys. Acta

    (1982)
  • FrickerL.D. et al.

    Purification and characterization of enkephalin convertase, an enkephalin synthesizing carboxypeptidase

    J. biol. Chem.

    (1983)
  • FrickerL.D. et al.

    Enkephalin convertase: a specific enkephalin synthesizing carboxypeptidase in adrenal chromaffin granules, brain and pituitary gland

    Life Sci.

    (1982)
  • GabizonR. et al.

    Photoinactivation and identification of the biogenic amine transporter in chromaffin granules from bovine adrenal medulla

    J. biol. Chem.

    (1982)
  • GabizonR. et al.

    The amine transporter from bovine chromaffin granules Partial purification

    J. biol. Chem.

    (1985)
  • GeisslerD. et al.

    Composition and biogenesis of complex carbohydrates of ox adrenal chromaffin granules

    Neuroscience

    (1977)
  • GoedertM. et al.

    Neurotensin in the adrenal medulla

    Neurosci. Lett.

    (1983)
  • GrafensteinH.R.K.v. et al.

    ATP-stimulated accumulation of calcium by chromaffin granules and mitochondria from the adrenal medulla

    Biochem. biophys. Res. Commun.

    (1983)
  • GratzlM.

    Distribution of chromaffin secretory vesicles, acetylcholinesterase, and lysosomal enzymes in sucrose and Percoll gradients

    Analyt. Biochem.

    (1984)
  • GratzlM. et al.

    Latent acetylcholinesterase in secretory vesicles isolated from adrenal medulla

    Biochim. biophys. Acta

    (1981)
  • GrigoryanN.A. et al.

    An extremely acidic copper-containing protein from chromaffin granules

    Biochem. biophys. Res. Commun.

    (1981)
  • GrüningerH.A. et al.

    Adenine nucleotide and phosphoenolpyruvate transport by bovine chromaffin granule “ghosts”

    Neuroscience

    (1983)
  • HelleK.B. et al.

    Membrane dopamine β-hydroxylase: a precursor for the soluble enzyme in the bovine adrenal medulla

    Int. J. Biochem.

    (1984)
  • Cited by (326)

    • Theoretical perspective on mononuclear copper-oxygen mediated C–H and O–H activations: A comparison between biological and synthetic systems

      2022, Chinese Journal of Catalysis
      Citation Excerpt :

      In addition to pMMO, the copper-oxygen species in lytic polysaccharide monooxygenases (LPMOs, Fig. 1(b)) can activate the C–H bond of polysaccharides (BDE of cellulose: 100 kcal/mol) [42], resulting in the degradation of polysaccharides such as chitin and cellulose [15,31,43–52]. In the “uncoupled” binuclear copper enzymes, including peptidylglycine α-hydroxylating monooxygenase (PHM), dopamine β-monooxygenase (DβM), and tyramine β-monooxygenase (TβM), two copper sites (CuM and CuH) are separated by a distance of ~11 Å without bridging ligands (Fig. 1(c)) [1,13,53–104]. The copper-oxygen species in these binuclear copper enzymes can mediate the stereospecific C–H hydroxylation of respective substrate (BDE: 83–90 kcal/mol), leading to the biosynthesis of physiologically important hormones and neurotransmitters [13,88,89].

    • Adrenal Gland

      2017, Boorman's Pathology of the Rat: Reference and Atlas
    View all citing articles on Scopus

    We would like to dedicate this paper to Prof. Hermann Blaschko, F.R.S. on the occasion of his 85th birthday.

    View full text