Control of Mitochondrial Substrate Oxidation

https://doi.org/10.1016/B978-0-12-152510-1.50012-2Get rights and content

Publisher Summary

This chapter discusses the control of oxidative metabolism by adenosine diphosphate (ADP) availability in isolated mitochondria and perfused organs. It focuses on the control of dehydrogenase activity. The enzymes, such as, the pyruvate dehydrogenase complex and some of the enzymes of the tricarboxylate cycle have been considered. The most important characteristics of these enzymes are that (1) they catalyze non-equilibrium reactions; (2) exert a dominant influence over the flux through the pathways that are central to catabolic metabolism; and (3) they are mitochondrial. This localization means that the supply of substrate, and dissipation of product, might be limited by the permeability properties of the inner mitochondrial membrane. Because these enzymes are dehydrogenases, the final arbiter of their activity is the respiratory chain, with its coupling to the phosphorylation of ADP. The chapter describes the control of the tricarboxylate cycle and of pyruvate dehydrogenase in their mitochondrial context

References (194)

  • T.P.M. Akerboom et al.

    FEBS Lett.

    (1977)
  • G.F. Azzone et al.

    Biochim. Biophys. Acta

    (1978)
  • G.F. Azzone et al.

    Biochim. Biophys. Acta

    (1978)
  • J.J. Batenburg et al.

    Biochem. Biophys. Res. Commun.

    (1975)
  • J.J. Batenburg et al.

    J. Biol. Chem.

    (1976)
  • M.D. Brand et al.

    J. Biol. Chem.

    (1976)
  • M.D. Brand et al.

    FEBS Lett.

    (1978)
  • S. Cha et al.

    J. Biol. Chem.

    (1964)
  • B. Chance et al.

    J. Biol. Chem.

    (1961)
  • P.K. Chiang et al.

    J. Biol. Chem.

    (1975)
  • E.N. Christiansen et al.

    Biochim. Biophys. Acta

    (1978)
  • W.A. Coty et al.

    J. Biol. Chem.

    (1974)
  • E.J. Davis et al.

    Biochem. Biophys. Res. Commun.

    (1978)
  • S.C. Dennis et al.

    J. Biol. Chem.

    (1979)
  • R.M. Denton et al.

    Int. J. Biochem.

    (1978)
  • J. Duszynski et al.

    J. Biol. Chem.

    (1978)
  • J.A. Gimpel et al.

    Biochim. Biophys. Acta

    (1973)
  • G.D. Greville

    Curr. Top. Bioenerg.

    (1969)
  • R.G. Hansford

    FEBS Lett.

    (1972)
  • R.G. Hansford

    J. Biol. Chem.

    (1976)
  • R.G. Hansford

    J. Biol. Chem.

    (1977)
  • R.G. Hansford

    Comp. Biochem. Physiol. B

    (1978)
  • R.G. Hansford et al.

    Biochem. Biophys. Res. Commun.

    (1967)
  • R.G. Hansford et al.

    Arch. Biochem. Biophys.

    (1978)
  • R.G. Hansford et al.

    J. Biol. Chem.

    (1975)
  • I.E. Hassinen et al.

    Biochim. Biophys. Acta

    (1975)
  • J.K. Hiltunen et al.

    Biochim. Biophys. Acta

    (1976)
  • J.K. Hiltunen et al.

    Int. J. Biochem.

    (1977)
  • M. Hirashima et al.

    J. Biol. Chem.

    (1967)
  • A. Holian et al.

    Arch. Biochem. Biophys.

    (1977)
  • F. Hucho et al.

    Arch. Biochem. Biophys.

    (1972)
  • F.E. Hull et al.

    J. Mol. Cell. Cardiol.

    (1973)
  • A. Kemp et al.

    Biochim. Biophys. Acta

    (1969)
  • G.W. Kosicki et al.

    J. Biol. Chem.

    (1966)
  • U. Küster et al.

    Biochim. Biophys. Acta

    (1976)
  • K. LaNoue et al.

    J. Biol. Chem.

    (1970)
  • K.F. LaNoue et al.

    J. Biol. Chem.

    (1972)
  • K.F. LaNoue et al.

    J. Biol. Chem.

    (1973)
  • K.F. LaNoue et al.

    Arch. Biochem. Biophys.

    (1974)
  • K. LaNoue et al.

    J. Biol. Chem.

    (1978)
  • A.L. Lehninger

    J. Biol. Chem.

    (1946)
  • A.B. Leiter et al.

    J. Biol. Chem.

    (1978)
  • J.J. Lemasters et al.

    J. Biol. Chem.

    (1979)
  • E. Lerner et al.

    J. Biol. Chem.

    (1972)
  • G. Löffler et al.

    FEBS Lett.

    (1975)
  • M. Lopes-Cardozo et al.

    Biochim. Biophys. Acta

    (1972)
  • M.J. Achs et al.

    Am. J. Physiol.

    (1977)
  • T.P.M. Akerboom et al.

    Eur. J. Biochem.

    (1978)
  • P. Borst

    Wiss. Konf. Ges. Dtsch. Naturforsch. Aerzte

    (1963)
  • J. Bremer

    Eur. J. Biochem.

    (1969)
  • Cited by (135)

    • Citric acid cycle regulation: Back bone for secondary metabolite production

      2019, New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Secondary Metabolites Biochemistry and Applications
    • Human dihydrolipoamide dehydrogenase (E3) deficiency: Novel insights into the structural basis and molecular pathomechanism

      2018, Neurochemistry International
      Citation Excerpt :

      ROS generation by the KGDHc is a major source of the mitochondrial oxidative stress (Adam-Vizi and Tretter, 2013; Andreyev et al., 2005, 2015; Mailloux et al., 2016; Quinlan et al., 2014; Rimessi et al., 2016; Shi et al., 2008; Starkov, 2013; Starkov et al., 2004; Tretter and Adam-Vizi, 2004). This, together with the compromised activity of the KGDHc, a key enzyme in the Krebs cycle (Gibson et al., 2000; Hansford, 1980; Lai et al., 1977; Massey, 1960a; Reed, 1974; Sheu and Blass, 1999), is highly implicated in hypoxia- and glutamate-induced cerebral damage, Wernicke-Korsakoff syndrome, neurodegenerative diseases, Friedreich's ataxia, ischemia-reperfusion, progressive supranuclear palsy, senescence/aging, infantile lactate acidosis, cancer, and E3-deficiency, among others (Albers et al., 2000; Anderson et al., 2016; Bunik et al., 2007; Burr et al., 2016; Butterworth and Besnard, 1990; Butterworth et al., 1993; Cameron et al., 2006; Chen et al., 2016; Droge and Schipper, 2007; Gibson et al., 1988, 2000, 2003, 2010; Graf et al., 2009; Klivenyi et al., 2004; Lucas and Szweda, 1999; Mastrogiacomo et al., 1996a, 1996b; Mizuno et al., 1990; Park et al., 2001; Peiris-Pages et al., 2015; Starkov, 2008; Starkov and Adam-Vizi, 2010; Tretter and Adam-Vizi, 2004, 2005; Zundorf et al., 2009). ROS generation by the PDHc appears to be significant only in vitro (Ambrus et al., 2015b; Fisher-Wellman et al., 2013; Mailloux et al., 2016; Quinlan et al., 2014; Starkov et al., 2004).

    • Formation of reactive oxygen species by human and bacterial pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes reconstituted from recombinant components

      2015, Free Radical Biology and Medicine
      Citation Excerpt :

      Obviously, over-production of ROS may lead to cellular damage in any organism or tissue [28–30,36,95]. In the human brain, the activity of OGDHc is a rate-limiting step in the Krebs cycle [1,2,4,5,76,96] and the activity of hPDHc was found to be five-fold higher than that of hOGDHc [97]. This ratio was ~3 (mitochondrion) or ~7 (intact cell) in fibroblasts and ~1.5 (mitochondrion) or ~15 (intact cell) in leukocytes [98].

    • Adaptation of oxidative phosphorylation to photoperiod-induced seasonal metabolic states in migratory songbirds

      2015, Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology
    View all citing articles on Scopus
    View full text