Elsevier

Brain Research Bulletin

Volume 52, Issue 5, 15 July 2000, Pages 319-330
Brain Research Bulletin

Article
Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices

https://doi.org/10.1016/S0361-9230(99)00245-2Get rights and content
Under a Creative Commons license
open archive

Abstract

Distinct domains of the prefrontal cortex in primates have a set of connections suggesting that they have different roles in cognition, memory, and emotion. Caudal lateral prefrontal areas (areas 8 and 46) receive projections from cortices representing early stages in visual or auditory processing, and from intraparietal and posterior cingulate areas associated with oculomotor guidance and attentional processes. Cortical input to areas 46 and 8 is complemented by projections from the thalamic multiform and parvicellular sectors of the mediodorsal nucleus associated with oculomotor functions and working memory. In contrast, caudal orbitofrontal areas receive diverse input from cortices representing late stages of processing within every unimodal sensory cortical system. In addition, orbitofrontal and caudal medial (limbic) prefrontal cortices receive robust projections from the amygdala, associated with emotional memory, and from medial temporal and thalamic structures associated with long-term memory. Prefrontal cortices are linked with motor control structures related to their specific roles in central executive functions. Caudal lateral prefrontal areas project to brainstem oculomotor structures, and are connected with premotor cortices effecting head, limb and body movements. In contrast, medial prefrontal and orbitofrontal limbic cortices project to hypothalamic visceromotor centers for the expression of emotions. Lateral, orbitofrontal, and medial prefrontal cortices are robustly interconnected, suggesting that they participate in concert in central executive functions. Prefrontal limbic cortices issue widespread projections through their deep layers and terminate in the upper layers of lateral (eulaminate) cortices, suggesting a predominant role in feedback communication. In contrast, when lateral prefrontal cortices communicate with limbic areas they issue projections from their upper layers and their axons terminate in the deep layers, suggesting a role in feedforward communication. Through their widespread connections, prefrontal limbic cortices may exercise a tonic influence on lateral prefrontal cortices, inextricably linking areas associated with cognitive and emotional processes. The integration of cognitive, mnemonic and emotional processes is likely to be disrupted in psychiatric and neurodegenerative diseases which preferentially affect limbic cortices and consequently disconnect major feedback pathways to the neuraxis.

Keywords

Orbitofrontal cortex
FEF
Cingulate cortex
Mental disease
Neurologic disease

Cited by (0)