Current Biology
Volume 10, Issue 17, 1 September 2000, Pages 1017-1024
Journal home page for Current Biology

Research Paper
The effects of visual object priming on brain activation before and after recognition

https://doi.org/10.1016/S0960-9822(00)00655-2Get rights and content
Under an Elsevier user license
open archive

Abstract

Background: Recognizing an object is improved by recent experience with that object even if one cannot recall seeing the object. This perceptual facilitation as a result of previous experience is called priming. In neuroimaging studies, priming is often associated with a decrease in activation in brain regions involved in object recognition. It is thought that this occurs because priming causes a sharpening of object representations which leads to more efficient processing and, consequently, a reduction in neural activity. Recent evidence has suggested, however, that the apparent effect of priming on brain activation may vary as a function of whether the neural activity is measured before or after recognition has taken place.

Results: Using a gradual ‘unmasking’ technique, we presented primed and non-primed objects to subjects, and measured activation time courses using high-field functional magnetic resonance imaging (fMRI). As the objects were slowly revealed, but before recognition had occurred, activation increased from baseline level to a peak that corresponded in time to the subjects’ behavioural recognition responses. The activation peak for primed objects occurred sooner than the peak for non-primed objects, and subjects responded sooner when presented with a primed object than with a non-primed object. During this pre-recognition phase, primed objects produced more activation than non-primed objects. After recognition, activation declined rapidly for both primed and non-primed objects, but now activation was lower for the primed objects.

Conclusions: Priming did not produce a general decrease in activation in the brain regions involved in object recognition but, instead, produced a shift in the time of peak activation that corresponded to the shift in time seen in the subjects’ behavioural recognition performance.

Cited by (0)