Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-29T00:14:12.158Z Has data issue: false hasContentIssue false

The functional architecture of the acetylcholine nicotinic receptor explored by affinity labelling and site-directed mutagenesis

Published online by Cambridge University Press:  17 March 2009

Jean-Pierre Changeux
Affiliation:
Institut Pasteur, Neurobiologie Moléculaire, CNRS D1284, Département des Biotechnologies, 25, rue du Docteur Roux, 75015 Paris, France
Jean-Luc Galzi
Affiliation:
Institut Pasteur, Neurobiologie Moléculaire, CNRS D1284, Département des Biotechnologies, 25, rue du Docteur Roux, 75015 Paris, France
Anne Devillers-Thiéry
Affiliation:
Institut Pasteur, Neurobiologie Moléculaire, CNRS D1284, Département des Biotechnologies, 25, rue du Docteur Roux, 75015 Paris, France
Daniel Bertrand
Affiliation:
Centre Médical Universitaire, Département de Physiologie, CH-1211 Geneva, Switzerland

Extract

The scientific community will remember Peter Läuger as an exceptional man combining a generous personality and a sharp and skilful mind. He was able to attract by his views the interest of a large spectrum of biologists concerned by the mechanism of ion translocation through membranes. Yet, he was not a man with a single technique or theory. Using an authentically multidisciplinary approach, his ambition was to ‘understand transmembrane transport at the microscopic level, to capture its dynamics in the course of defined physiological processes’ (1987). According to him, ‘new concepts in the molecular physics of proteins’ had to be imagined, and ‘the traditional static picture of proteins has been replaced by the notions that proteins represent dynamic structures, subjected to conformational fluctuations covering a very wide time-range’ (1987).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramson, S. N., Li, Y., Culver, P. & Taylor, P. (1989). An analog of lophotoxin reacts covalently with Tyrigo in the α-subunit of the nicotinic acetylcholine receptor. J. biol. Chem. 264, 1266612672.CrossRefGoogle ScholarPubMed
ADAMS, P. R. (1981). Acetylcholine receptor kinetics, J. Membrane Biol. 58, 161174.Google Scholar
Albuquerque, E. X., Alkondon, M., Lima-Landman, M. T., Deshpande, S. S. & Ramoa, A. S. (1988). Molecular targets on noncompetitive blockers at the central and peripheral nicotinic and glutamatergic receptors. In Neuromuscular Function, vol. 13 (ed. Sellin, L. S., Libelius, R. and Thesleff, S.), pp. 273300. New York: Elsevier.Google Scholar
Anand, R., Conroy, W. G., Schoepfer, R., Whiting, P. & Lindstrom, J. (1991). Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. J. biol. Chem. 266, 1119211198.CrossRefGoogle ScholarPubMed
Aracava, Y., Deshpande, S. S., Swanson, K. L., Rapoport, H., Wonnacott, S., Lunt, G. & Albuquerque, E. X. (1987). Nicotinic acetylcholine receptors in cultured neurons from the hippocampus and brain stem of the rat characterized by single channel recording. FEBS Lett. 222, 6370.CrossRefGoogle ScholarPubMed
Ascher, P. & Nowak, L. (1988). Quisqualate and kainate activated channels in mouse central neurons in culture, J. Physiol. 399, 227245.CrossRefGoogle ScholarPubMed
Barkas, T., Mauron, A., Roth, B., Alliod, C., Tzartos, S. J. & Ballivet, M. (1987). Mapping the main immunogenic region and toxin-binding site of the nicotinic acetylcholine receptor. Science 235, 7780.CrossRefGoogle ScholarPubMed
Barnard, E. A., Darlison, M. G. & Seeburg, P. (1987). Molecular biology of the GABAA receptor: the receptor/channel superfamily. Trends in Neurosci. 10, 502509.CrossRefGoogle Scholar
Becker, C. M., Hoch, W. & Betz, H. (1988). Glycine receptor heterogeneity in rat spinal cord during postnatal development. EMBO J. 7, 37173726.CrossRefGoogle ScholarPubMed
Bertrand, D., Devillers-Thiéry, A., Revah, F., Galzi, J.-L., Hussy, N., Mulle, C., Bertrand, S., Ballivet, M. & Changeux, J.-P. (1992). Unconventional pharmacology of a neuronal nicotinic-receptor mutated in the channel domain. Proc. natn. Acad. Sci. USA 89, 12611265.CrossRefGoogle ScholarPubMed
Blount, P. & Merlie, J. P. (1989). Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor. Neuron 3, 349357.CrossRefGoogle ScholarPubMed
Bon, F., Lebrun, E., Gomel, J., Van Rappenbusch, R., Cartaud, J., Popot, J. L. & Changeux, J.-P. (1982). Orientation relative de deux oligoméres constituant la forme lourde du récepteur de l'acétylcholine chez la Torpille marbrée. C. R. Acad. Sci. Paris 295, 199203.Google Scholar
Bon, F., Lebrun, E., Gomel, J., Van Rappenbusch, R., Cartaud, J., Popot, J. L. & Changeux, J.-P. (1984). Image analysis of the heavy form of the acetylcholine receptor from Torpedo marmorata. J. molec. Biol. 176, 205237.CrossRefGoogle ScholarPubMed
Boulter, J., O'Shea-Greenfield, A., Duvoisin, R. M., Connolly, J. G., Wada, E., Jensen, A., Gardner, P. D., Ballivet, M., Deneris, E. S., McKinnon, D., Heinemann, S. & Patrick, J. (1990). α3, α5, and β4: three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. J. biol. Chem. 265, 44724482.CrossRefGoogle Scholar
Boyd, N. D. & Cohen, J. B. (1980). Kinetics of binding of [3H]acetylcholine and [3H]carbamoylcholine to Torpedo postsynaptic membranes: slow conformational transitions of the cholinergic receptor. Biochemistry 19, 53445358.CrossRefGoogle ScholarPubMed
Brandl, C. J. & Deber, C. M. (1986). Hypothesis about the function of membraneburied proline residues in transport proteins. Proc. natn. Acad. Sci. USA 83, 917921.Google Scholar
Brisson, A. & Unwin, P. N. T. (1985). Quaternary structure of the acetylcholine receptor. Nature 315, 474477.CrossRefGoogle ScholarPubMed
Campbell, I. D. (1988). The structure and dynamics of membrane spanning helices by high resolution NMR and molecular dynamics. In Transport through Membranes: Carriers, Channels and Pumps (ed. Pullman, A. et al. ), pp. 91101.CrossRefGoogle Scholar
Chang, H. W. & Neumann, E. (1976). Dynamic properties of isolated acetylcholine receptor proteins: release of calcium ions caused by acetylcholine binding. Proc. natn. Acad. Sci. USA 73, 33643368.CrossRefGoogle ScholarPubMed
Changeux, J.-P. (1961). The feedback control mechanism of biosynthetic L-threonine deaminase by L-isoleucine. Cold Spring Harbor Symp. Quant. Biol. 26, 313318.CrossRefGoogle ScholarPubMed
Changeux, J.-P. (1965). Sur les propriétés allostériques de la L-thréonine désaminase de biosynthèse. VI. Discussion générale. Bull. Soc. Chim. Biol. 47, 281300.Google Scholar
Changeux, J.-P. (1966). Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs. Mol. Pharmacol. 2, 369392.Google ScholarPubMed
Changeux, J.-P. (1969). Remarks on the symmetry and cooperative properties of biological membranes. In Symmetry and Functions of Biological Systems at the Macromolecular Level (ed. Engström, A. and Stranberg, B.), Nobel Symposium No. 11. Wiley Interscience Division, New York, pp. 235256.Google Scholar
Changeux, J.-P. (1980). Les expériences de Claude Bernard sur le curare et les données actuelles sur la transmission synaptique cholinergique. In La transmission neuromusculaire. Les médiateurs et le milieu intérieur. Fondation Singer Polignac (ed. Masson, ), pp. 7187.Google Scholar
Changeux, J.-P. (1981). The acetylcholine receptor: an ‘allosteric’ membrane protein. In Harvey Lectures 75, 85254. Academic Press.Google Scholar
Changeux, J.-P. (1990). Functional architecture and dynamics of the nicotinic acetylcholine receptor: an allosteric ligand-gated ion channel. Fidia Research Foundation Neuroscience Award Lectures, vol. 4 (ed. Changeux, J.-P.Llinas, R. R.Purves, D. and Bloom, F. E.), pp. 21168. Raven Press Ltd.Google Scholar
Changeux, J.-P., Thiéry, J. P., Tung, Y. & Kittel, C. (1967 a). On the cooperativity of biological membranes. Proc. natn. Acad. Sci. USA 57, 335341.Google Scholar
Changeux, J.-P., Podleski, T. & Wofsy, L. (1967 b). Affinity labeling of the acetylcholine receptor. Proc. natn. Acad. Sci. USA 58, 20632070.CrossRefGoogle ScholarPubMed
Changeux, J.-P., Kasai, M. & Lee, C. Y. (1970 a). The use of a snake venom toxin to characterize the cholinergic receptor protein. Proc. natn. Acad. Sci. USA 67, 12411247.CrossRefGoogle ScholarPubMed
Changeux, J.-P., Kasai, M., Huchet, M. & Meunier, J. C. (1970 b). Extraction á partir du tissu électrique de gymnote d'une protéine présentant plusieurs propriétés caractéristiques du récepteur physiologique de l'acétylcholine. C. R. Acad. Sci. 270D, 28642867.Google Scholar
Changeux, J.-P., Devillers-Thiéry, A. & Chemouilli, P. (1984). Acetylcholine receptor: an allosteric protein. Science 225, 13351345.CrossRefGoogle ScholarPubMed
Changeux, J.-P., Pinset, C. & Ribera, A. B. (1986). Effects of chlorpromazine and phencyclidine on mouse C2 acetylcholine receptor kinetics. J. physiol. 378, 497513.CrossRefGoogle ScholarPubMed
Charnet, P., Labarca, C., Leonard, R. J., Vogelaar, N. J., Czyzyk, L., Gouin, A., Davidson, N. & Lester, H. A. (1990). An open-channel blocker interacts with adjacent turns of α-helices in the nicotinic acetylcholine receptor. Neuron 2, 8795.CrossRefGoogle Scholar
Chothia, C. & Lesk, A. M. (1985). Helix movements in proteins. Trends in Biochem. Sci. 10, 116118.Google Scholar
Chothia, C., Lesk, A. M., Tramontano, A., Levitt, M., Smith-Gill, S. J., Air, G., Sheriff, S., Padlan, E. A., Davis, D., Tulip, W. R., Colman, P. M., Spinelli, S., Alzari, P. M. & Poljak, R. J. (1989). Conformations of immunoglobulin hypervariable regions. Nature 342, 877883.Google Scholar
Claudio, T., Ballivet, M., Patrick, J. & Heinemann, S. (1983). Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor gammasubunit. Proc. natn. Acad. Sci. USA 80, 11111115.Google Scholar
Cockcroft, V. B., Osguthorpe, D. J., Barnard, E. A. & Lunt, G. G. (1990). Modeling of agonist binding to the ligand-gated ion channel superfamily of receptors. Proteins: Structure, Function and Genetics 8, 386397.CrossRefGoogle Scholar
Cockcroft, V. B., Osguthorpe, D. J., Barnard, E. A., Friday, A. E. & Lunt, G. G. (1992). Ligand-gated ion channels: homology and diversity. Mol. Neurobiol. 4, 129169.Google Scholar
Cohen, J. & Strnad, N. (1987). Permeability control and desensitization by nicotinic acetylcholine receptors. In Molecular Mechanisms of Desensitization to Signal Molecules, vol. H6 (ed. Konijn, T. M.), pp. 257273. Nato ASI series, Berlin: Springer.CrossRefGoogle Scholar
Cohen, J. B., Weber, M. & Changeux, J.-P. (1974). Effects of local anesthetics and calcium on the interaction of cholinergic ligands with the nicotinic receptor protein from Torpedo marmorata. Mol. Pharmacol. 10, 904932.Google ScholarPubMed
Cohen, J. B., Sharp, S. D. & Liu, W. S. (1991). Structure of the agonist-binding site of the nicotinic acetylcholine receptor. J. biol. Chem. 266, 2335423364.Google Scholar
Cohen, J. B., Blanton, M. P., Chiara, D. C., Sharp, S. D. & White, B. H. (1992). Structural organization of functional domains of the nicotinic acetylcholine receptor. J. Cell. Biochem.: Keystone Symposia, T 003, p. 217.Google Scholar
Colquhoun, D. (1979). The link between drug binding and response: theories and observations. In The Receptors: General Principles and Procedures, vol. 1 (ed. O'Brien, R. D.), pp. 93142. Plenum Press.CrossRefGoogle Scholar
Colquhoun, D. & Sakmann, B. (1985). Fast-events in single-channel currents activated by acetylcholine and its analogues at the frog muscle endplate. J. Physiol. 369, 5O1557.CrossRefGoogle Scholar
Conti-Tronconi, B. M., Tang, F., Walgrave, S. & Gallagher, W. (1990). Nonequivalence of α-bungarotoxin binding sites in the native nicotinic receptor molecule. Biochemistry 29, 10461054.CrossRefGoogle ScholarPubMed
Cooper, E., Couturier, S. & Ballivet, M. (1991). Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 350, 235238.CrossRefGoogle ScholarPubMed
Couturier, S., Bertrand, D., Matter, J. M., Hernandez, M. C., Bertrand, S., Millar, N., Valera, S., Barkas, T. & Ballivet, M. (1990 a). A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX. Neuron 5, 845856.CrossRefGoogle Scholar
Couturier, S., Erkman, L., Valera, S., Rungger, D., Bertrand, S., Boulter, J., Ballivet, M. & Bertrand, D. (1990 b). α5, α3 and non-α3: three clustered avian genes encoding neuronal nicotinic acetylcholine receptor related subunits. J. biol. Chem. 265, 1756017567.CrossRefGoogle Scholar
Cox, R. N., Kaldany, R. R., Dipaola, M. & Karlin, A. (1985). Time-resolved photolabeling by quinacrine azide of a non-competitive inhibitor site of the nicotinic acetylcholine receptor in a transient agonist-induced state. J. biol. Chem. 260, 71867193.CrossRefGoogle Scholar
Cull-Candy, S. C. & Usowicz, M. M. (1989). On the multiple-conductance single channels activated by excitatory amino acids in large cerebellar neurones of the rat. J. Physiol. 415, 555582.CrossRefGoogle ScholarPubMed
Culver, P., Fenical, W. & Taylor, P. (1984). Lophotoxin irreversibly inactivates the nicotinic acetylcholine receptor by preferential association at one of the two primary agonist sites. J. biol. Chem. 259, 37633770.CrossRefGoogle ScholarPubMed
Czajkowski, C. & Karlin, A. (1991). Agonist binding site of Torpedo electric tissue nicotinic acetylcholine receptor: a negatively charged region of the gamma subunit within 0·9 nm of the α subunit binding site disulfide. J. biol. Chem. 266, 2260322612.CrossRefGoogle Scholar
Dale, H. H. (1914). The actions of certain esters and esters of choline, and their relation to muscarine. J. Pharmacol. exp. Ther. 6, 147190.Google Scholar
Damle, V. N., McLaughlin, M. & Karlin, A. (1978). Bromoacetylcholine as an affinity label of the acetylcholine receptor from Torpedo californica. Biochem. biophys. Res. Comm. 84, 845851.Google Scholar
Delegeane, A. M. & McNamee, M. G. (1980). Independent activation of the acetylcholine receptor from Torpedo californica at two sites. Biochemistry 19, 890895.Google Scholar
Dennis, M., Giraudat, J., Kotzyba-Hibert, F., Goeldner, M., Hirth, C., Chang, J. Y. & Changeux, J.-P. (1986). A photoaffinity ligand of the acetylcholine binding site predominantly labels the region 179–207 of the α-subunit on native acetylcholine receptor from Torpedo marmorata. FEBS Lett. 207, 243249.CrossRefGoogle Scholar
Dennis, M., Giraudat, J., Kotzyba-Hibert, F., Goeldner, M., Hirth, C., Chang, J. Y., Lazure, C., Chretien, M. & Changeux, J.-P. (1988). Amino acids of the Torpedo marmorata acetylcholine receptor α subunit labeled by a photoaffinity ligand for the acetylcholine binding site. Biochemistry 27, 23462357.CrossRefGoogle ScholarPubMed
Devillers-Thiéry, A., Changeux, J.-P., Paroutaud, P. & Strosberg, A. D. (1979). The amino-terminal sequence of the 40000 molecular weight subunit of the acetylcholine receptor protein from Torpedo marmorata. FEBS Lett. 104, 99105.CrossRefGoogle Scholar
Devillers-Thiéry, A., Giraudat, J., Bentaboulet, M. & Changeux, J.-P. (1983). Complete mRNA coding sequence of the acetylcholine binding alpha subunit of Torpedo marmorata acetylcholine receptor: a model for the transmembrane organization of the polypeptide chain. Proc. natn. Acad. Sci. USA 80, 20672071.Google Scholar
Dhaenens, M., Lacombe, L., Lehn, J. M. & Vigneron, J. P. (1984). Binding of acetylcholine and other molecular cations by a macrocyclic receptor molecule of speleand type. J. Chem. Soc. chem. Commun. 16, 10971099.Google Scholar
Dipaola, M., Czajkowski, C. & Karlin, A. (1989). The sidedness of the COOH terminus of the acetylcholine receptor δ-subunit. J. biol. Chem. 264, 17.Google Scholar
Dowding, A. J. & Hall, Z. W. (1987). Monoclonal antibodies specific for each of the two toxin-binding sites of Torpedo acetylcholine receptor. Biochemistry 26, 63726381.CrossRefGoogle ScholarPubMed
Duvoisin, R. M., Deneris, E. S., Patrick, J. & Heinemann, S. (1989). The functional diversity of the neuronal nicotinic acetylcholine receptors is increased by a novel subunit: β4. Neuron 3, 487496.CrossRefGoogle Scholar
Eisemann, G. & Alvarez, O. (1991). Structure and function of channels and channelogs as studied by computational chemistry. J. Membrane Biol. 119, 109132.CrossRefGoogle Scholar
Fahr, A., Lauffer, L., Schmidt, D., Heyn, M. P. & Hucho, F. (1985). Covalent labelling of functional states of the acetylcholine receptor: effects of antagonists on the receptor conformation. Eur. j. Biochem. 147, 483487.CrossRefGoogle ScholarPubMed
Fenton, J. W. & Singer, S. J. (1965). Affinity labeling of antibodies to the p-azophenyltrymethylammonium hapten and a structural relationship among antibody active sites of different specificities. Biochem. biophys. Res. Commun. 20, 315320.Google Scholar
Ferrer-Montiel, A. V., Montal, M. S., Diaz-Munoz, M. & Montal, M. (1991). Agonist-independent activation of acetylcholine receptor channels by protein kinase A phosphorylation. Proc. natn. Acad. Sci. USA 88, 1021310217.CrossRefGoogle ScholarPubMed
Furois-Corbin, S. & Pullman, A. (1988). Theoretical study of potential ion-channels formed by bundles of α-helices. Partial modelling of the acetylcholine receptor channel. In Transport through Membranes: Carriers, Channels and Pumps (ed. Pullman, A. et al. ), pp. 337357. Kluwer Academic Publishers.Google Scholar
Galzi, J.-L., Revah, F., Black, D., Goeldner, M., Hirth, C. & Changeux, J.-P. (1990). Identification of a novel amino acid α-Tyr93 within the active site of the acetylcholine receptor by photoaffinity labeling: additional evidence for a three-loop model of the acetylcholine binding site. J. biol. Chem. 265, 1043010437.Google Scholar
Galzi, J.-L., Revah, F., Bessis, A. & Changeux, J.-P. (1991 a). Functional architecture of the nicotinic acetylcholine receptor: from the electric organ to brain. Ann. Rev. Pharmacol. Toxicol. 31, 3772.Google Scholar
Galzi, J.-L., Revah, F., Bouet, F., Menez, A., Goeldner, M., Hirth, C. & Changeux, J.-P. (1991 b). Allosteric transitions of the acetylcholine receptor probed at the amino acid level with a photolabile cholinergic ligand. Proc. natn. Acad. Sci. USA 88, 50515055.Google Scholar
Galzi, J.-L., Bertrand, D., Devillers-Thiéry, A., Revah, F., Bertrand, S. & Changeux, J.-P. (1991 c). Functional significance of aromatic amino acids from three peptide loops of the α7 neuronal nicotinic receptor site investigated by site-directed mutagenesis. FEBS Lett. 294, 198202.CrossRefGoogle Scholar
Gerhart, J. C. & Pardee, A. B. (1962). The enzymology of control by feedback inhibition. J. biol. Chem. 237, 891896.Google Scholar
Gershoni, J. M. (1987). Expression of the α-bungarotoxin binding site of the nicotinic acetylcholine receptor by Escherichia coli transformants. Proc. natn. Acad. Sci. USA 84, 43184321.Google Scholar
Giraudat, J., Dennis, M., Heidmann, T., Chang, J. Y. & Changeux, J.-P. (1986). Structure of the high affinity binding site for noncompetitive blockers of the acetylcholine receptor: Serine-262 of the δ subunit is labeled by [3H]chlorpromazine. Proc. natn. Acad. Sci. USA 83, 27192723.CrossRefGoogle ScholarPubMed
Giraudat, J., Dennis, M., Heidmann, T., Haumont, P. Y., Lederer, F. & Changeux, J.-P. (1987). Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: [3H]chlorpromazine labels homologous residues in the beta and delta chains. Biochemistry 26, 24102418.Google Scholar
Giraudat, J., Galzi, J. L., Revah, F., Changeux, J. P., Haumont, P. Y. & Lederer, F. (1989). The noncompetitive blocker chlorpromazine labels segment Mil but not segment MI on the nicotine acetylcholine receptor a subunit. FEBS Lett. 253, 190198.CrossRefGoogle Scholar
Goeldner, M. P. & Hirth, C. G. (1980). Specific photoaffinity labeling induced by energy transfer: application to irreversible inhibition of acetylcholinesterase. Proc. natn. Acad. Sci. USA 77, 64396442.Google Scholar
Goeldner, M. P., Hirth, C. G., Kieffer, B. & Ourisson, G. (1982). Photosuicide inhibition – a step towards specific photoaffinity labelling. Trends biochem. Sci. 7, 310312.CrossRefGoogle Scholar
Gordon, A., Davis, G. & Diamond, I. (1977). Phosphorylation of membrane proteins at a cholinergic synapse. Proc. natn. Acad. Sci. USA 74, 263267.Google Scholar
Gross, A., Ballivet, M., Rungger, D. & Bertrand, D. (1991). Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes: role of the alpha subunit in agonist sensitivity and desensitization. Pflügers Arch. 419, 545551.CrossRefGoogle ScholarPubMed
Grünhagen, H. H. & Changeux, J.-P. (1976). Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. Quinacrine: a fluorescent probe for the conformational transitions of the cholinergic receptor protein in its membrane bound state. J. molec. Biol. 106, 497516.Google Scholar
Gu, Y., Silberstein, L. & Hall, Z. W. (1985). The effects of a myasthenic serum on the acetylcholine receptors of C2 myotubes. 1. Immunological distinction between the two toxin-binding sites of the receptor. J. Neurosci. 5, 19091916.Google Scholar
Hazelbauer, G. & Changeux, J. P. (1974). Reconstitution of a chemically excitable membrane. Proc. Natn. Acad. Sci. U.S.A. 71, 14791483.CrossRefGoogle ScholarPubMed
Heginbotham, L. & McKinnon, R. (1992). The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron 8, 483491.CrossRefGoogle ScholarPubMed
Heidmann, T. & Changeux, J.-P. (1979). Fast kinetic studies on the interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata. Eur. J. Biochem. 94, 281296.Google Scholar
Heidmann, T. & Changeux, J.-P. (1980). Interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata in the millisecond time range: resolution of an ‘intermediate’ conformational transition and evidence for positive cooperative effects. Biochem. biophys. Res. Comm. 97, 889896.Google Scholar
Heidmann, T. & Changeux, J.-P. (1982). Un modèle moléculaire de régulation d'efficacité d'une synapse chimique au niveau postsynaptique. C. R. Acad. Sci. Paris, série 3, 295, 665670.Google Scholar
Heidmann, T., Oswald, R. E. & Changeux, J. P. (1983 a). Multiple sites of action for non competitive blockers on acetylcholine receptor rich membrane fragments from Torpedo marmorata. Biochemistry 22, 31123127.Google Scholar
Heidmann, T., Bernhardt, J., Neumann, E. & Changeux, J.-P. (1983 b). Rapid kinetics of agonist binding and permeability response analysed in parallel on acetylcholine receptor rich membranes from Torpedo marmorata. Biochemistry 22, 54525459CrossRefGoogle Scholar
Heidmann, T. & Changeux, J.-P. (1984). Time-resolved photolabelling by the noncompetitive blocker chlorpromazine of the acetylcholine receptor in its transiently open and closed ion channel conformations. Proc. natn. Acad. Sci. USA 81, 18971901.Google Scholar
Heidmann, T. & Changeux, J.-P. (1986). Characterization of the transient agonisttriggered state of the acetylcholine receptor rapidly labeled by the noncompetitive blocker [3H]chlorpromazine: additional evidence for the open channel conformation. Biochemistry 25, 61096113.CrossRefGoogle ScholarPubMed
Heinemann, S., Boulter, J., Deneris, E., Connolly, J., Gardner, P., Wada, E., Wada, K., Duvoisin, R., Ballivet, M., Swanson, L. & Patrick, J. (1989). Brain and muscle nicotinic acetylcholine receptor: a gene family. In Molecular Biology of Neuroreceptors and Ion Channels, vol. H32 (ed. Maelicke, A.), pp. 1330. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Herz, J. M., Johnson, D. A. & Taylor, P. (1989). Distance between the agonist and noncompetitive inhibitor sites on the nicotinic acetylcholine receptor. J. biol. Chem. 264, 1243912448.Google Scholar
Hess, G. P., Pasquale, E. B., Walker, J. W. & McNamee, M. G. (1982). Comparison of acetylcholine receptor-controlled cation flux in membrane vesicles form Torpedo californica and Electrophorus electricus: chemical kinetic measurements in the millisecond region. Proc. natn. Acad. Sci. USA 79, 963967.Google Scholar
Hlbert, M. F. & Trumpp-Kallmeyer, S. T. (1991). Three-dimensional models of neurotransmitter G-protein coupled receptors. Mol. Pharmacol. 40, 815.Google Scholar
Hucho, F. L., Oberthur, W. & Lottspeich, F. (1986). The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices Mil of the receptor subunits. FEBS Lett. 205, 137142.Google Scholar
Huganir, R. L. & Greengard, P. (1990). Regulation of neurotransmitter receptor desensibilization by protein phosphorylation. Neuron 5, 555567.Google Scholar
Imoto, K., Methfessel, C., Sakmann, B., Mishina, M., Mori, Y., Konno, T., Fukuda, K., Kurasaki, M., Bujo, H., Fujita, Y. & Numa, S. (1986). Location of a delta-subunit region determining ion transport through the acetylcholine receptor channel. Nature 324, 670674.CrossRefGoogle ScholarPubMed
Imoto, K., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y., Fukuda, K. & Numa, S. (1988). Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645648.CrossRefGoogle ScholarPubMed
Imoto, K., Konno, T., Nakai, J., Wang, F., Mishina, M. & Numa, S. (1991). A ring of uncharged polar amino acids as a component of channel constriction in the nicotinic acetylcholine receptor. FEBS Lett. 289, 193200.CrossRefGoogle ScholarPubMed
Jackson, M. B. (1984). Spontaneous openings of the acetylcholine receptor channel. Proc. natn. Acad. Sci. USA 81, 39013904.CrossRefGoogle ScholarPubMed
Jackson, M. B. (1988). Dependence of acetylcholine receptor channel kinetics on agonist concentration in cultured mouse muscle fibres. J. Physiol. 397, 555583.CrossRefGoogle ScholarPubMed
Jackson, M. B. (1989). Perfection of a synaptic receptor: kinetics and energetics of the acetylcholine receptor. Proc. natn. Acad. Sci. USA 86, 21992203.Google Scholar
Jahr, C. E. & Stevens, C. F. (1989). Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325, 522525.Google Scholar
Kao, P. N. & Karlin, A. (1986). Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J. biol. Chem. 261, 80858088.Google Scholar
Kao, P. N., Dwork, A. J., Kaldany, R. R. J., Silver, M. L., Wideman, J., Stein, S. & Karlin, A. (1984). Identification of the alpha-subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J. biol. Chem. 259, 1166211665.CrossRefGoogle ScholarPubMed
Karlin, A. (1980). Molecular properties of nicotinic acetylcholine receptors. In Cell Surface Reviews, vol. 6 (ed. Poste, G., Nicolson, G. L. and Cotman, C. W.), pp. 191260. New York.Google Scholar
Karlin, A. (1983). Anatomy of a receptor. Neuroscience Comment. 1, 111123.Google Scholar
Karlin, A. (1991). Explorations of the nicotinic acetylcholine receptor. The Harvey Lectures Series 85, 71107.Google Scholar
Karlin, A. & Winnick, M. (1968). Reduction and specific alkylation of the receptor for acetylcholine. Proc. natn. Acad. Sci. USA 60, 668674.CrossRefGoogle ScholarPubMed
Kasai, M., Podleski, T. R. & Changeux, J. P. (1970). Some structural properties of excitable membranes labelled by fluorescent probes. FEBS Lett. 7, 1319.Google Scholar
Kasai, M. & Changeux, J. P. (1971). In vitro excitation of purified membrane fragments by cholinergic agonists. I. Pharmacological properties of the excitable membrane fragments. II. The permeability change caused by cholinergic agonists. III. Comparison of the dose response curves to decamethonium with the corresponding binding curves of decamethonium to the cholinergic receptor. J. Memb. Biology 6, 180.CrossRefGoogle Scholar
Katz, B. (1966). Nerve Muscle and Synapse. New York: McGraw and Hill Book Co.Google Scholar
Katz, B. & Miledi, R. (1970). Membrane noise produced by acetylcholine. Nature 226, 962963.Google Scholar
Katz, B. & Miledi, R. (1973 a). The effect of atropine on acetylcholine action at the neuromuscular junction. Proc. R. Soc. B 184, 221226.Google Scholar
Katz, B. & Miledi, R. (1973 b). The characteristics of ‘end-plate noise’ produced by different depolarizing drugs. J. Physiol. 230, 707717.CrossRefGoogle ScholarPubMed
Katz, B. & Miledi, R. (1977). Transmitter leakage from motor nerve endings. Proc. R. Soc. B 196, 5972.Google Scholar
Katz, B. & Thesleff, S. (1957). A study of the ‘desensitization’ produced by acetylcholine at the motor end-plate. J. Physiol. 138, 6380.Google Scholar
Klarsfeld, A., Devillers-Thiéry, A., Giraudat, J. & Changeux, J.-P. (1984). A single gene codes for the nicotinic acetylcholine receptor alpha-subunit in Torpedo marmorata: structural and developmental implications. EMBO J. 3, 3541.Google Scholar
Konno, T., Busch, C., Von Kitzing, E., Imoto, K., Wang, F., Nakai, J., Mishina, M., Numa, S. & Sakmann, B. (1991). Rings of anionic amino acids as structural determinants of ion selectivity in the acetylcholine receptor channel. Proc. R. Soc. B 244, 6979.Google Scholar
Kuffler, S. W. & Yoshikami, D. (1975). The distribution of acetylcholine sensitivity at the post-synaptic membrane of vertebrate skeletal twitch muscles: iontophoretic mapping in the micron range, J. Physiol. 244, 703730.CrossRefGoogle ScholarPubMed
Kuhse, J., Schmieden, V. & Betz, H. (1990). A single amino acid exchange alters the pharmacology of neonatal rat glycine receptor subunit. Neuron 5, 867873.Google Scholar
Kurosaki, T., Fukuda, K., Konno, T., Mori, Y., Tanaka, K. I., Mishina, M. & Numa, S. (1987). Functional properties of nicotinic acetylcholine receptor subunits expressed in various combinations. FEBS Lett. 214, 253258.Google Scholar
Langenbuch-Cachat, J., Bon, C., Goeldner, M., Hirth, C. & Changeux, J.-P. (1988). Photoaffinity labeling by aryldiazonium derivatives of Torpedo marmorata acetylcholine receptor. Biochemistry 27, 23372345.CrossRefGoogle Scholar
Läuger, P. (1987). Dynamics of ion transport systems in membranes. Physiol. Rev. 67, 12961331.Google Scholar
Lee, C. Y. & Chang, C. C. (1966). Modes of actions of purified toxins from elapid venoms on neuromuscular transmission. Mem. Inst. Butantan Sao Paulo 33, 555572.Google Scholar
Leonard, R. J., Labarca, C. G., Charnet, P., Davidson, N., Lester, H. A. (1988). Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor. Science 242, 15781581.CrossRefGoogle ScholarPubMed
Lipton, S. A., Aizenman, E. & Loring, R. H. (1987). Neural nicotinic acetylcholine responses in solitary mammalian retinal ganglion cells. Pflügers Arch. 410, 3743.Google Scholar
Loring, R. H., Chiapinelli, V. A., Zigmond, R. E. & Cohen, J. B. (1984). Characterization of a snake venom neurotoxin which blocks nicotinic transmission in the avian ciliary ganglion. Neuroscience 11, 989999.Google Scholar
Luetje, C. W., Wada, K., Rogers, S., Abramson, S. N., Tsuji, K., Heinemann, S. & Patrick, J. (1990). Neurotoxins distinguish between different neuronal nicotinic acetylcholine receptor subunit combinations. J. Neurochem. 55, 632640.Google Scholar
Luyten, W. H. M. L. (1986). A model for the acetylcholine binding site of the nicotinic acetylcholine receptor. J. Neurosci. Res. 16, 5173.Google Scholar
McCrea, P. D., Popot, J. L. & Engelman, D. M. (1987). Transmembrane topography of the nicotinic acetylcholine receptor delta-subunit. Embo J. 6, 36193626.Google Scholar
McNamee, M. G. & Ochoa, E. L. M. (1982). Reconstitution of acetylcholine receptor function in model membranes. Neuroscience 7, 23052319.Google Scholar
Maelicke, A. & Reich, E. (1976). On the interaction between Cobra alpha-neurotoxin and the acetylcholine receptor. Cold Spring Harb. Symp. Quant. Biol. 40, 203210.Google Scholar
Maelicke, A., Fulpius, B. W., Klett, R. P. & Reich, E. (1977). Acetylcholine receptor responses to drug binding. J. biol. Chem. 252, 48114830.Google Scholar
Maricq, A. V., Peterson, A. S., Brake, A. J., Myers, R. M. & Julius, D. (1991). Primary structure and functional expression of the 5HT3 receptor, a serotonin-gatedion channel. Science 254, 432437.CrossRefGoogle ScholarPubMed
Merlie, J. P., Sebbane, R., Gardner, S. & Lindstrom, J. (1983). cDNA clone for the alpha-subunit of the acetylcholine receptor from the mouse muscle cell line BC3H-1. Proc. natn. Acad. Sci. USA 80, 38453849.CrossRefGoogle ScholarPubMed
Middleton, R. E. & Cohen, J. B. (1991). Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: [3H]nicotine as an agonist photoaffinity label. Biochemistry 30, 69876997.Google Scholar
Miles, K., Greengard, P. & Huganir, R. L. (1989). Calcitonin gene-related peptide regulates phosphorylation of the nicotinic acetylcholine receptor in rat myotubes. Neuron 2, 15171524.Google Scholar
Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K., Fujita, Y., Fukuda, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M. & Numa, S. (1985). Location of functional regions of acetylcholine receptor alpha-subunit by site-directed mutagenesis. Nature 313, 364369.Google Scholar
Monod, J., Changeux, J.-P. & Jacob, F. (1963). Allosteric proteins and cellular control systems. J. molec. Biol. 6, 306329.Google Scholar
Monod, J., Wyman, J. & Changeux, J.-P. (1965). On the nature of allosteric transitions: a plausible model. J. molec. Biol. 12, 88118.Google Scholar
Montal, M., Anholt, R. & Labarca, P. (1986). The reconstituted receptor. In Ion Channel Reconstitution (ed. Miller, C.), pp. 157204. Plenum.Google Scholar
Mosckovitz, R. & Gershoni, J. M. (1988). Three possible disulfides in the acetylcholine receptor α-subunit. J. biol. Chem. 263, 10171022.Google Scholar
Muhn, P., Fahr, A. & Hucho, F. (1984). Photoaffinity labeling of acetylcholine receptor in millisecond time scale. FEBS Lett. 1, 146150.Google Scholar
Mulac-Jericevic, B. & Atassi, M. Z. (1986). Segment alpha-182–198 of Torpedo californica acetylcholine receptor contains a second toxin-binding region and binds anti-receptor antibodies. FEBS Lett. 199, 6874.Google Scholar
Mulle, C. & Changeux, J.-P. (1990). A novel type of nicotinic receptor in the rat central nervous system characterized by patch-clamp techniques. J. Neurosci. 10, 169175.Google Scholar
Mulle, C., Benoit, P., Pinset, C., Roa, M. & Changeux, J.-P. (1988). Calcitonin generelated peptide enhances the rate of desensitization of the nicotinic acetylcholine receptor in cultured mouse muscle cells. Proc. natn. Acad. Sci. USA 85, 57285732.Google Scholar
Mulle, C., Vidal, C., Benoit, P. & Changeux, J. P. (1991). Existence of different subtypes of nicotinic acetylcholine receptor in the rat habenulo interpeduncular system. J. Neurosci. 11, 25882597.Google Scholar
Mulle, C., Choquet, D., Korn, H. & Changeux, J. P. (1992). Calcium influx through nicotinic receptor in rat central neurons; its relevance to cellular regulations. Neuron 8, 135143.Google Scholar
Nachmansohn, D. (1959). Chemical and Molecular Basis of Nerve Activity, pp. 235. New York: Academic Press.Google Scholar
Neher, E. & Sakmann, B. (1976a). Noise analysis of drug-induced conductance voltage clamp currents in denervated frog muscle fibres, j. Physiol. 258, 705729.Google Scholar
Neher, E. & Sakmann, B. (1976b). Single channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799802.CrossRefGoogle ScholarPubMed
Neher, E. & Steinbach, J. H. (1978). Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J. Physiol. 277, 153176.Google Scholar
Neubig, R. R. & Cohen, J. B. (1979). Equilibrium binding of [2H]tubocurarine and [3H]acetylcholine by Torpedo postsynaptic membranes: stoichiometry and ligand interactions. Biochemistry 18, 54645475.Google Scholar
Neubig, R. R. & Cohen, J. B. (1980). Permeability control by cholinergic receptors in Torpedo post synaptic membranes: agonist dose response relations measured at second and millisecond times. Biochemistry 19, 27702779.Google Scholar
Neubig, R. R., Boyd, N. D. & Cohen, J. B. (1982). Conformations of Torpedo acetylcholine receptor associated with ion transport and desensitization. Biochemistry 21, 34603467.Google Scholar
Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. & Numa, S. (1982). Primary structure of alphasubunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299, 793797.Google Scholar
Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T. & Numa, S. (1983a). Primary structures of beta and delta-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 301, 251255.Google Scholar
Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T. & Numa, S. (1983b). Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302, 528532.Google Scholar
Numa, S. (1989). A molecular view of neurotransmitter receptors and ionic channels. Harvey Lecture, Series 83, pp. 121165.Google Scholar
Oberthür, W., Muhn, P., Baumann, H., Lottspeich, F., Wittmann-Liebold, B. & Hucho, F. (1986). The reaction site of a noncompetitive antagonist in the deltasubunit of the nicotinic acetylcholine receptor. EMBO J. 5, 18151819.Google Scholar
Ochoa, E. L. M., Chattopadhyay, A. & McNamee, M. G. (1989). Desensitization of the nicotinic acetylcholine receptor: molecular mechanisms and effect of modulators. Cell mol. Neurobiol. 9, 141178.CrossRefGoogle ScholarPubMed
Ochoa, E. L. M., LI, L. & McNamee, M. G. (1992). Desensitization of central cholinergic mechanisms and neuroadaptation to nicotine. Molecular Neurobiology 4, 251287.Google Scholar
O'Leary, M. E. & White, M. M. (1991). The role of aspartate-200 in ligand activation of Torpedo acetylcholine receptors. Abstract 21st Annual Meetings, No. 17, part 1, Society for Neurociences, 14·5, p. 23.Google Scholar
Oswald, R. E. & Changeux, J.-P. (1982). Crosslinking of alpha-bungarotoxin to the acetylcholine receptor from Torpedo marmorata by ultraviolet light irradiation. FEBS Lett. 139, 225229.CrossRefGoogle Scholar
Papke, R. L., Boulter, J., Patrick, J. & Heinemann, S. (1989). Single-channel currents of rat neuronal nicotinic acetylcholine receptors expressed in Xenopusoocytes. Nueron 3, 589596.Google Scholar
Patneau, D. K. & Mayer, M. L. (1991). Kinetic analysis of interactions between kainate and AMPA: evidence for activation of a single receptor in mouse hippocampal neurons. Neuron 6, 785798.Google Scholar
Pedersen, S. E. & Cohen, J. B. (1990a). d-tubocurarine binding sites are located at α-γ and α-δ subunit interfaces of the nicotinic acetylcholine receptor. Proc. natn. Acad. Sci. USA 87, 27852789.Google Scholar
Pedersen, S. E. & Cohen, J. B. (1990b). [3H]meproadifen mustard reacts with glu-262 of the nicotinic acetylcholine receptor (AChR) α-subunit. Biophys. J. 57, 126a.Google Scholar
Perutz, M. F. (1989). Mechanisms of cooperativity and allosteric regulation in proteins. Quarterly Rev. Biophys. 22, 139236.Google Scholar
Popot, J. L., Sugiyama, H. & Changeux, J. P. (1974). Démonstration de la désensibilisation pharmacologique du récepteur de l'acetylcholine in vitro avec des fragments de membrane excitable de Torpille. C. R. Acad. Sci. Paris 279, 17211724.Google Scholar
Popot, J. L., Cartaud, J. & Changeux, J. P. (1981). Reconstitution of a functional acetylcholine receptor: incorporation into artificial lipid vesicles and pharmacology of the agonist-controlled permeability changes. Eur. jf. Biochem. 118, 203214.Google Scholar
Popot, J. L. & Changeux, J.-P. (1984). Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. Physiol. rev. 64, 11621239.CrossRefGoogle ScholarPubMed
Pritchett, D. B. & Seeburg, P. H. (1991). γ-aminobutyric acid type A receptor point mutation increases the affinity of compounds for the benzodiazepine site. Proc. natn. Acad. Sci. USA 88, 14211425.Google Scholar
Pullman, A. (1991). Contribution of theoretical chemistry to the study of ion transport through membranes. Chem. Rev. 91, 793812.Google Scholar
Radding, W., Corfield, P. W. R., Levinson, L. S., Hashim, G. A. & Low, B. (1988). α-toxin binding to acetylcholine receptor α179–191 peptides: intrinsic fluorescence studies. FEBS Lett. 231, 212216.Google Scholar
Raftery, M. A., Hukapiller, M., Strader, C. D. & Hood, L. E. (1980). Acetylcholine receptor complex of homologous subunits. Science 208, 14541457.Google Scholar
Ralston, S., Sarin, V., Thanh, H. L., Rivier, J., Fox, J. L. & Lindstrom, J. (1987). Synthetic peptides used to locate the a-bungarotoxin binding site and immunogenic regions on alpha-subunits of the nicotinic acetylcholine receptor. Biochemistry 26, 32613266.Google Scholar
Ramoa, A. S., Alkondon, M., Aracava, Y., Irons, J., Lunt, G. G., Deshpande, S. S., Wonnacott, S., Aronstam, R. S. & Albuquerque, E. X. (1990). The anticonvulsant MK-801 interacts with the peripheral and central nicotinic acetylcholine receptor ion channels. J. Pharmacol, exp. Ther. 254, 7182.Google Scholar
Rapier, C., Wonnacott, S., Lunt, G. G. & Albuquerque, E. X. (1987). The neurotoxin histrionicotoxin interacts with the putative ion channel of the nicotinic acetylcholine receptors in the central nervous system. FEBS Lett. 212, 292296.Google Scholar
Ratnam, M., Gullick, W., Spiess, J., Wan, K., Criado, M. & Lindstrom, J. (1986). Structural heterogeneity of the alpha-subunits of the nicotinic acetylcholine receptor in relation to agonist affinity alkylation and antagonist binding. Biochemistry 25, 42684275.Google Scholar
Revah, F., Galzi, J.-L., Giraudat, J., Haumont, P. Y., Lederer, F. & Changeux, J.-P. (1990). The noncompetitive blocker [3H]chlorpromazine labels three amino acids of the acetylcholine receptor γ-subunit: implications for the α helical organization of the Mil segments and the structure of the ion channel. Proc. natn. Acad. Sci. USA 87. 46754679.Google Scholar
Revah, F., Bertrand, D., Galzi, J.-L., Devillers-Thiéry, A., Mulle, C., Hussy, N., Bertrand, S., Ballivet, M. & Changeux, J.-P. (1991). Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353, 846849.Google Scholar
Reynolds, J. A. & Karlin, A. (1978). Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica. Biochemistry 17, 20352038.Google Scholar
Rubin, M. M. & Changeux, J.-P. (1966). On the nature of allosteric transitions: implications of non exclusive ligand binding. J. molec. Biol. 21, 265274.Google Scholar
Safran, A., Sagi-Eisenberg, R., Neumann, D. & Fuch, S. (1987). Phosphorylation of the acetylcholine receptor by protein kinase C and identification of the phosphorylation site within the receptor delta subunit. J. biol. Chem. 262, 1050610510.Google Scholar
Sakmann, B., Patlak, J. & Neher, E. (1980). Single acetylcholine activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature 286, 7173.Google Scholar
Sakmann, B., Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kurasaki, M., Fukuda, K. & Numa, S. (1985). Role of acetylcholine receptor subunits in gating of the channel. Nature 318, 538543.Google Scholar
Satow, Y., Cohen, G. H., Padlan, E. A. & Davies, D. R. (1986). Phosphocholine binding immunoglobulin Fab MCPC603: an X-ray diffraction study at 2·7 Å. Mol. Biol. 190, 593604.Google Scholar
Schneider, H. J., Güttes, D. & Schneider, U. (1986). A macrobicyclic polyphenoxide as receptor analogue for choline and related ammonium compounds. Angew. Chem. Int. Ed. Engl. 25, 647649.Google Scholar
Schneider, H. J., Güttes, D. & Schneider, U. (1988). Host-guest complexes with water-soluble macrocyclic polyphenolates including induced fit and simple elements of a proton pump. J. Am. chem. Soc. 110, 64496454.Google Scholar
Schoepfer, R., Whiting, P., Luther, M., Keyser, K., Karten, H. & Lindstrom, J. (1989). Structure of muscle and neuronal nicotinic acetylcholine receptors. In Molecular Biology of Neuroreceptors and Ion Channels, vol. H 32 (ed. Maelicke, A.), pp. 3753. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Schoepfer, R., Conroy, W. G., Whiting, P., Gore, M. & Lindstrom, J. (1990). Brain α-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene family. Neuron 5, 3548.Google Scholar
Sheppod, T. J., Petti, M. A. & Dougherty, A. D. (1986). Tight, oriented binding of an aliphatic guest by a new class of water-soluble molecules with hydrophobic binding sites. J. Am. chem. Soc. 108, 60856087.Google Scholar
Sine, S. M. & Claudio, T. (1991). γ- and δ-subunits regulate the affinity and the cooperativity of ligand binding to the acetylcholine receptor. J. biol. Chem. 266, 1936919377.Google Scholar
Stroud, R. M., McCarthy, M. P. & Shuster, M. (1990). Nicotinic acetylcholine receptor superfamily of ligand-gated ion channels. Biochemistry 29, 1101011023.Google Scholar
Sussman, J., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. & Silman, I. (1991). Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253, 872879.Google Scholar
Teichberg, V. I. & Changeux, J.-P. (1976). Presence of two forms with different isoelectric points of the acetylcholine receptor in the electric organ of Electrophorus electricus and their catalytic interconversion in vitro. FEBS Lett. 67, 264268.Google Scholar
Teichberg, V. I. & Changeux, J.-P. (1977). Evidence for protein phosphorylation and dephosphorylation in membrane fragments isolated from the electric organ of Electrophorus electricus. FEBS Lett. 74, 7176.CrossRefGoogle ScholarPubMed
Teichberg, V. I., Sobel, A. & Changeux, J. P. (1977). In vitro phosphorylation of acetylcholine receptor. Nature 267, 540542.Google Scholar
Tomaselli, G. F., McLaughlin, J. T., Jurman, M., Hawrot, E. & Yellen, G. (1991). Site-directed mutagenesis alters agonist sensitivity of the nicotinic acetylcholine receptor. Biophysical J. 59, 33a.Google Scholar
Unwin, P. N. T. & Zampighi, G. (1980). Structure of the function between communicating cells. Nature 283, 545549.Google Scholar
Unwin, P. N. T., Toyoshima, C. & Kubalek, E. (1988). Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes. J. Cell Biol. 107, 11231138.Google Scholar
Vandenberg, R. J., French, C. R., Barry, P. H., Shine, J. & Schofield, P. R. (1992a). Antagonism of ligand-gated ion channel receptors: two domains of the glycine receptor α subunit form the strychnine-binding site. Proc. natn. Acad. Sci. USA 89, 17651769.Google Scholar
Vandenberg, R. J., French, C. R., Barry, P. H., Shine, J. & Schofield, P. R. (1992b). Three domains of the a subunit of the glycine receptor form the strychnine binding site. J. Cell. Biochem.: Keystone Symposia on Molecular and Cellular Biology, T 213, p. 229.Google Scholar
Vandlen, R. L., Wu, W. C. S., Eisenach, J. C. & Raftery, M. A. (1979). Studies of the composition of purified Torpedo californica acetylcholine receptor and of its subunits. Biochemistry 10, 18451854.Google Scholar
Vernino, S., Amador, M., Luetje, C. W., Patrick, J. & Dani, J. A. (1992). Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptor. Neuron 8, 127134.Google Scholar
Vlllar, M. J., Roa, M., Huchet, M., Hökfelt, T., Changeux, J.-P., Fahrenkrug, J., Brown, J. C., Epstein, M. & Hersh, L. (1989). Immunoreactive calcitonin generelated peptide, vaso-active intestinal polypeptide and somatostatin: distribution in developing chicken spinal cord motoneurons and role in regulation of muscle acetylcholine receptor synthesis. Eur. J. Neurosci. i, 269287.Google Scholar
Villarroel, A., Herlitze, S., Koenen, M. & Sakmann, B. (1991). Location of a threonine residue in the α-subunit M2 transmembrane segment that determines theion flow through the acetylcholine receptor channel. Proc. R. Soc. B243, 6974.Google Scholar
Wagner, K., Edson, K., Heginbotham, L., Post, M., Huganir, R. L. & Czernik, A. J. (1991). Determination of the Tyrosine phosphorylation sites of the nicotinic acetylcholine receptor. J. biol. Chem. 266, 2378423789.Google Scholar
Waksman, G., Changeux, J.-P. & Roques, B. (1980). Structural requirements for agonist and noncompetitive blocking action of acylcholine derivatives on Electrophorus electricus electroplaque. Mol. Pharmacol. 18, 2027.Google Scholar
Walker, J. W., Takeyasu, K. & McNamee, M. G. (1982). Activation and inactivation kinetics of Torpedo californica acetylcholine receptor in reconstituted membranes. Biochemistry 21, 53845389.Google Scholar
Watters, D. & Maelicke, A. (1983). Organization of ligand binding sites at the acetylcholine receptor: a study with monoclonal antibodies. Biochemistry 22, 18111819.Google Scholar
Weber, M. & Changeux, J.-P. (1974a). Binding of Naja nigricollis 3H-alpha-toxin to membrane fragments from Electrophorus and Torpedo electric organs. 1. Binding of the tritiated alpha-neurotoxin in the absence of effector. Mol. Pharmacol. 10, 114.Google Scholar
Weber, M. & Changeux, J.-P. (1974b). id. 2. Effect of the cholinergic agonists and antagonists on the binding of the tritiated α-neurotoxin. Mol. Pharmacol. 10, 1334.Google Scholar
Weber, M. & Changeux, J.-P. (1974c). id. 3. Effect of local anaesthetics on the binding of the tritiated α-neurotoxin. Mol. Pharmacol. 10, 3540.Google Scholar
Weiland, G., Frisman, D. & Taylor, P. (1979). Affinity labeling of the subunits of the membrane associated cholinergic receptor. Mol. Pharmacol. 15, 213226.Google Scholar
Wess, J., Gdula, D. & Brann, M. R. (1991). Site-directed mutagenesis of the m3 muscarinic receptor: identification of a series of threonine and tyrosine residues involved in agonist but not antagonist binding. EMBO J. 10, 37293734.Google Scholar
White, B. H., Howard, S., Cohen, S. G. & Cohen, J. B. (1991). The hydrophobic photoreagent 3-(Trifluoromethyl)-3-m-([125I]iodophenyl)diazirine is a novel noncompetitive antagonist of the nicotinic acetylcholine receptor. J. biol. Chem. 266, 2159521607.Google Scholar
White, B. H. & Cohen, J. B. (1992). Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist, jf. Biol. Chem. 267, 1577015783.Google Scholar
Whiting, P., Vincent, A. & Newsom-Davis, J. (1985). Monoclonal antibodies to Torpedo acetylcholine receptor. Characterisation of antigenic determinants within the cholinergic binding site. Eur. Jf. Biochem. 150, 533539.Google Scholar
Wilson, P. T., Lentz, T. L. & Hawrot, E. (1985). Determination of the primary amino acid sequence specifying the a-bungarotoxin binding site on the a subunit of the acetylcholine receptor from Torpedo californica. Proc. natn. Acad. Sci. USA 82, 87908794.Google Scholar
Yee, G. H. & Huganir, R. L. (1987). Determination of the sites of cAMP-dependent phosphorylation on the nicotinic acetylcholine receptor. J. biol. Chem. 262, 1674816753.Google Scholar