Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-15T15:05:27.943Z Has data issue: false hasContentIssue false

Characterization of a novel large-field cone bipolar cell type in the primate retina: Evidence for selective cone connections

Published online by Cambridge University Press:  15 December 2010

HANNAH R. JOO
Affiliation:
Department of Biological Structure and the National Primate Research Center, University of Washington, Seattle, Washington
BETH B. PETERSON
Affiliation:
Department of Biological Structure and the National Primate Research Center, University of Washington, Seattle, Washington
TONI J. HAUN
Affiliation:
Department of Biological Structure and the National Primate Research Center, University of Washington, Seattle, Washington
DENNIS M. DACEY*
Affiliation:
Department of Biological Structure and the National Primate Research Center, University of Washington, Seattle, Washington
*
*Address correspondence and reprint requests to: Dr. Dennis M. Dacey, Department of Biological Structure, University of Washington, Seattle, WA 98195-7420. E-mail: dmd@u.washington.edu

Abstract

Parallel processing of visual information begins at the first synapse in the retina between the photoreceptors and bipolar cells. Ten bipolar cell types have been previously described in the primate retina: one rod and nine cone bipolar types. In this paper, we describe an 11th type of bipolar cell identified in Golgi-stained macaque retinal whole mount and vertical section. Axonal stratification depth, in addition to dendritic and axonal morphology, distinguished the “giant” cell from all previously well-recognized bipolar cell types. The giant bipolar cell had a very large and sparsely branched dendritic tree and a relatively large axonal arbor that costratified with the DB4 bipolar cell near the center of the inner plexiform layer. The sparseness of the giant bipolar’s dendritic arbor indicates that, like the blue cone bipolar, it does not contact all the cones in its dendritic field. Giant cells contacting the same cones as midget bipolar cells, which are known to contact single long-wavelength (L) or medium-wavelength (M) cones, demonstrate that the giant cell does not exclusively contact short-wavelength (S) cones and, therefore, is not a variant of the previously described blue cone bipolar. This conclusion is further supported by measurement of the cone contact spacing for the giant bipolar. The giant cell contacts an average of about half the cones in its dendritic field (mean ± s.d. = 52 ± 17.6%; n = 6), with a range of 27–82%. The dendrites from single or neighboring giant cells that converge onto the same cones suggest that the giant cell may selectively target a subset of cones with a highly variable local density, such as the L or M cones.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balse, E., Tessier, L.H., Forster, V., Roux, M.J., Sahel, J.A. & Picaud, S. (2006). Glycine receptors in a population of adult mammalian cones. Journal of Physiology 571, 391401.CrossRefGoogle Scholar
Boycott, B.B., Hopkins, J.M. & Sperling, H.G. (1987). Cone connections of the horizontal cells of the rhesus monkey’s retina. Proceedings of the Royal Society of London Biological Sciences 229, 345379.Google ScholarPubMed
Boycott, B.B. & Wässle, H. (1991). Morphological classification of bipolar cells of the primate retina. European Journal of Neuroscience 3, 10691088.Google Scholar
Calkins, D.J., Schein, S.J., Tsukamoto, Y. & Sterling, P. (1994). M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature 371, 7072.Google Scholar
Chan, T.L., Martin, P.R. & Grünert, U. (2001). Immunocytochemical identification and analysis of the diffuse bipolar cell type DB6 in macaque monkey retina. European Journal of Neuroscience 13, 829832.CrossRefGoogle ScholarPubMed
Cuenca, N., Deng, P., Linberg, K.A., Lewis, G.P., Fisher, S.K. & Kolb, H. (2002). The neurons of the ground squirrel retina as revealed by immunostains for calcium binding proteins and neurotransmitters. Journal of Neurocytology 31, 649666.CrossRefGoogle ScholarPubMed
de Monasterio, F.M., McCrane, E.P., Newlander, J.K. & Schein, S.J. (1985). Density profile of blue-sensitive cones along the horizontal meridian of macaque retina. Investigative Ophthalmology & Visual Science 26, 289302.Google Scholar
de Monasterio, F.M., Schein, S.J. & McCrane, E.P. (1981). Staining of blue-sensitive cones of the macaque retina by a fluorescent dye. Science 213, 12781281.CrossRefGoogle ScholarPubMed
Euler, T., Schneider, H. & Wässle, H. (1996). Glutamate responses of bipolar cells in a slice preparation of the rat retina. Journal of Neuroscience 16, 29342944.Google Scholar
Euler, T. & Wässle, H. (1995). Immunocytochemical identification of cone bipolar cells in the rat retina. Journal of Comparative Neurology 361, 461478.Google Scholar
Famiglietti, E.V. (1981). Functional architecture of cone bipolar cells in mammalian retina. Vision Research 21, 15591563.Google Scholar
Ghosh, K.K., Bujan, S., Haverkamp, S., Feigenspan, A. & Wassle, H. (2004). Types of bipolar cells in the mouse retina. Journal of Comparative Neurology 469, 7082.Google Scholar
Grünert, U., Martin, P.R. & Wässle, H. (1994). Immunocytochemical analysis of bipolar cells in the macaque monkey retina. Journal of Comparative Neurology 348, 607627.CrossRefGoogle ScholarPubMed
Haverkamp, S., Haeseleer, F. & Hendrickson, A. (2003). A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina. Visual Neuroscience 20, 589600.Google Scholar
Hopkins, J.M. & Boycott, B.B. (1997). The cone synapses of cone bipolar cells of primate retina. Journal of Neurocytology 26, 313325.Google Scholar
Jeon, C.J. & Masland, R.H. (1995). A population of wide-field bipolar cells in the rabbit’s retina. Journal of Comparative Neurology 360, 403412.CrossRefGoogle ScholarPubMed
Kolb, H. (1970). Organization of the outer plexiform layer of the primate retina: Electron microscopy of Golgi-impregnated cells. Philosophical Transactions of the Royal Society B: Biological Sciences 258, 261283.Google Scholar
Kolb, H. & Dekorver, L. (1991). Midget ganglion cells of the parafovea of the human retina: A study by electron microscopy and serial section reconstructions. Journal of Comparative Neurology 303, 617636.CrossRefGoogle ScholarPubMed
Kolb, H., Linberg, K.A. & Fisher, S.K. (1992). Neurons of the human retina: A Golgi study. Journal of Comparative Neurology 318, 147187.CrossRefGoogle ScholarPubMed
Kolb, H., Nelson, R. & Mariani, A. (1981). Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study. Vision Research 21, 10811114.Google Scholar
Kouyama, N. & Marshak, D.W. (1992). Bipolar cells specific for blue cones in the macaque retina. Journal of Neuroscience 12, 12331252.CrossRefGoogle ScholarPubMed
Lee, S.C., Jusuf, P.R. & Grunert, U. (2004). S-cone connections of the diffuse bipolar cell type DB6 in macaque monkey retina. Journal of Comparative Neurology 474, 353363.Google Scholar
Linberg, K.A., Suemune, S. & Fisher, S.K. (1996). Retinal neurons of the California ground squirrel, Spermophilus beecheyi: A golgi study. Journal of Comparative Neurology 365, 173216.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Macneil, M.A., Heussy, J.K., Dacheux, R.F., Raviola, E. & Masland, R.H. (2004). The population of bipolar cells in the rabbit retina. Journal of Comparative Neurology 472, 7386.Google Scholar
Mariani, A.P. (1982). Biplexiform cells: Ganglion cells of the primate retina that contact photoreceptors. Science 216, 11341136.Google Scholar
Mariani, A.P. (1983). Giant bistratified bipolar cells in monkey retina. Anatomical Record 206, 215220.CrossRefGoogle Scholar
Mariani, A.P. (1984). Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature 308, 184186.CrossRefGoogle ScholarPubMed
Martin, P.R. & Grünert, U. (1992). Spatial density and immunoreactivity of bipolar cells in the macaque monkey retina. Journal of Comparative Neurology 323, 269287.CrossRefGoogle ScholarPubMed
McGillem, G.S. & Dacheux, R.F. (2001). Rabbit cone bipolar cells: Correlation of their morphologies with whole-cell recordings. Visual Neuroscience 18, 675685.Google Scholar
Mills, S.L. & Massey, S.C. (1992). Morphology of bipolar cells labeled by DAPI in the rabbit retina. Journal of Comparative Neurology 321, 133149.Google Scholar
Packer, O.S., Williams, D.R. & Bensinger, D.G. (1996). Photopigment transmittance imaging of the primate photoreceptor mosaic. Journal of Neuroscience 16, 22512260.CrossRefGoogle ScholarPubMed
Perry, V.H. & Cowey, A. (1988). The lengths of the fibres of henle in the retina of macaque monkeys: Implications for vision. Neuroscience 25, 225236.Google Scholar
Polyak, S.L. (1941). The Retina. Chicago, IL: University of Chicago Press.Google Scholar
Pourcho, R.G. & Goebel, D.J. (1987). A combined golgi and autoradiographic study of 3H-glycine-accumulating cone bipolar cells in the cat retina. Journal of Neuroscience 7, 11781188.Google Scholar
Rodieck, R.W. (1988). The primate retina. In Comparative Primate Biology, Vol. 4: Neurosciences, ed.Steklis, H.D., pp. 203278. New York: Alan R. Liss, Inc.Google Scholar
Rodieck, R.W. (1989). Starburst amacrine cells of the primate retina. Journal of Comparative Neurology 285, 1837.CrossRefGoogle ScholarPubMed
Rodieck, R.W. & Watanabe, M. (1993). Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus. Journal of Comparative Neurology 338, 289303.Google Scholar
Roorda, A., Metha, A.B., Lennie, P. & Williams, D.R. (2001). Packing arrangement of the three cone classes in primate retina. Vision Research 41, 12911306.Google Scholar
Wässle, H., Dacey, D.M., Haun, T., Haverkamp, S., Grünert, U. & Boycott, B.B. (2000). The mosaic of horizontal cells in the macaque monkey retina: With a comment on biplexiform ganglion cells. Visual Neuroscience 17, 591608.Google Scholar
Wässle, H., Puller, C., Muller, F. & Haverkamp, S. (2009). Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. Journal of Neuroscience 29, 106117.Google Scholar
Wässle, H., Regus-Leidig, H. & Haverkamp, S. (2006). Expression of the vesicular glutamate transporter vGluT2 in a subset of cones of the mouse retina. Journal of Comparative Neurology 496, 544555.Google Scholar
West, R.W. (1978). Bipolar and horizontal cells of the gray squirrel retina: Golgi morphology and receptor connections. Vision Research 18, 129136.CrossRefGoogle ScholarPubMed