Skip to main content
Log in

Tight Junctions of the Blood–Brain Barrier

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The blood–brain barrier is essential for the maintainance and regulation of the neural microenvironment. The blood–brain barrier endothelial cells comprise an extremely low rate of transcytotic vesicles and a restrictive paracellular diffusion barrier. The latter is realized by the tight junctions between the endothelial cells of the brain microvasculature, which are subject of this review. Morphologically, blood–brain barrier-tight junctions are more similar to epithelial tight junctions than to endothelial tight junctions in peripheral blood vessels.

2. Although blood–brain barrier-tight junctions share many characteristics with epithelial tight junctions, there are also essential differences. However, in contrast to tight junctions in epithelial systems, structural and functional characteristics of tight junctions in endothelial cells are highly sensitive to ambient factors.

3. Many ubiquitous molecular constituents of tight junctions have been identified and characterized including claudins, occludin, ZO-1, ZO-2, ZO-3, cingulin, and 7H6. Signaling pathways involved in tight junction regulation comprise, among others, G-proteins, serine, threonine, and tyrosine kinases, extra- and intracellular calcium levels, cAMP levels, proteases, and TNFα. Common to most of these pathways is the modulation of cytoskeletal elements which may define blood–brain barrier characteristics. Additionally, cross-talk between components of the tight junction– and the cadherin–catenin system suggests a close functional interdependence of the two cell–cell contact systems.

4. Recent studies were able to elucidate crucial aspects of the molecular basis of tight junction regulation. An integration of new results into previous morphological work is the central intention of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Aaku-Saraste, E., Hellwig, A., and Huttner, W. B. (1996). Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure-Remodeling of the neuroepithelium prior to neurogenesis. Dev. Biol. 180:664–679.

    PubMed  Google Scholar 

  • Abbott, N. J., Hughes, C. C. W., Revest, P. A., and Greenwood, J. (1992). Development and characterization of a rat capillary endothelial culture. Towards an in vitro BBB. J. Cell Sci. 103:23–38.

    PubMed  Google Scholar 

  • Anderson, J. M. (1997). MAGUK magic. Curr. Biol. 6:382–384.

    Google Scholar 

  • Anderson, J. M., and Van Itallie, C. M. (1995). Tight junctions and the molecular basis for regulation of paracellular permeability. Am. J. Physiol. 269:G467-G475.

    PubMed  Google Scholar 

  • Ando-Akatsuka, Y., Saitou, M., Hirase, T., Kishi, M., Sakaqkibara, A., Itoh, M., Yonemura, S., Furuse, M., and Tsukita, S. (1996). Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J. Cell Biol. 133:43–48.

    PubMed  Google Scholar 

  • Arthur, F. E., Shivers, R. R., and Bowman, P. D. (1987). Astrocyte-mediated induction of tight junctions in brain capillary endothelium: An efficient in vitro model. Dev. Brain Res. 36:155–159.

    Google Scholar 

  • Bacallao, R., Garfinkel, A., Monke, S., Zampighi, G., and Mandel, L. J. (1994). ATP-depletion: A novel method to study junctional properties in epithelial tissues. I. Rearrangement of the actin cytoskeleton. J. Cell Sci. 107:3301–3313.

    PubMed  Google Scholar 

  • Balda, M. S., and Anderson, J. M. (1993). Two classes of tight junctions are revealed by ZO-1 isoforms. Am. J. Physiol. 264:C918-C924.

    PubMed  Google Scholar 

  • Balda, M. S., and Matter, K. (1998). Tight junctions. J. Cell Sci. 111:541–547.

    PubMed  Google Scholar 

  • Balda, M. S., Gonzales-Mariscal, L., Contreras, R. G., Macias-Silva, M., Torres-Marques, M. E., Garcia-Sainz, J. A., and Cereijido, M. (1991). Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J. Membr. Biol. 122:193–202.

    PubMed  Google Scholar 

  • Balda, M. S., Gonzales-Mariscal, L., Matter, K., Cereijido, M., and Anderson, J. M. (1993). Assembly of tight junction. The role of diacylglycerol. J. Cell Biol. 123:293–302.

    PubMed  Google Scholar 

  • Balda, M. S., Whitney, J. A., Flores, C., Gonzáles, S., Cereijido, M., and Matter, K. (1996). Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J. Cell Biol. 134:1031–1049.

    PubMed  Google Scholar 

  • Bauer, H. C., Bauer, H., Lamet-Schwandtner, A., Amberger, A., Ruiz, P., and Steiner, M. (1993). Neovascularization and the appearance of morphological characteristics of the blood-brain barrier in the embryonic mouse central nervous system. Dev. Brain Res. 75:269–278.

    Google Scholar 

  • Bentzel, C. J., Hainau, B., Ho, S., Hui, S. W., Edelman, A., Anagnostopoulos, T., and Benedetti, E. L. (1980). Cytoplasmic regulation of tight junction permeability: Effect of plant cytokinins. Am. J. Physiol. 239:C75-C89.

    PubMed  Google Scholar 

  • Brightman, M. W., and Reese, T. S. (1969). Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40:648–677.

    PubMed  Google Scholar 

  • Bundgaard, M., and Cserr, H. F. (1981). A glial blood-brain barrier in elasmobranchs. Brain Res. 226:61–74.

    PubMed  Google Scholar 

  • Butt, A. M., Jones, H. C., and Abbott, N. J. (1990). Electrical resistance across the blood-brain barrier in anaesthetized rats: A developmental study. J. Physiol. 429:47–62.

    PubMed  Google Scholar 

  • Cassella, J. P., Lawrenson, J. G., and Firth, J. A. (1997). Development of endothelial paracellular clefts and their tight junctions in the pial microvessels of the rat. J. Neurocytol. 26:567–575.

    PubMed  Google Scholar 

  • Chen, Y., Merzdorf, C., Paul., D. L., and Goodenough, D. A. (1997). COOH terminus of occludin is required for tight junction barrier function in early Xenopus embryos. J. Cell Biol. 138:891–899.

    PubMed  Google Scholar 

  • Citi, S. (1992). Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells. J. Cell Biol. 117:169–178.

    PubMed  Google Scholar 

  • Citi, S., and Denisenko, N. (1995). Phosphorylation of the tight junction protein cingulin and the effects of protein kinase inhibitors and activators in MDCK epithelial cells. J. Cell Sci. 108:2917–2926.

    PubMed  Google Scholar 

  • Citi, S., Sabanay, H., Kendrick-Jones, J., and Geiger, B. (1989). Cingulin: Characterization and localization. J. Cell Sci. 93:107–122.

    PubMed  Google Scholar 

  • Claude, P. (1978). Morphologic factors influencing transepithelial permeability. A model for the resistance of the zonula occludens. J. Membr. Biol. 39:219–232.

    PubMed  Google Scholar 

  • Claude, P., and Goodenough, D. A. (1973). Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J. Cell Biol. 58:390–400.

    PubMed  Google Scholar 

  • Contreras, R. G., Miller, J. H., Zamora, M., Gonzales-Mariscal, L., and Cereijido, M. (1992). Interaction of calcium with plasma membrane of epithelial (MDCK) cells during junction formation. Am. J. Physiol. 263:C313-C318.

    PubMed  Google Scholar 

  • Coomber, B. L., Stewart, P. A., Hayakawa, K., Farrell, C. L., and DelMaestro, R. F. (1987). Quantitative morphology of human glioblastoma multifome microvessels: Structural basis of blood-brain barrier defect. J. Neuro-Oncol. 5:299–307.

    Google Scholar 

  • D'Angelo Siliciano, J., and Goodenough, D. A. (1988). Localization of the tight junction protein, ZO-1, is modulated by extracellular calcium ion. J. Cell Biol. 107:2389–2399.

    PubMed  Google Scholar 

  • Dehouck, B., Dehouck, M.-P., Fruchart, J.-C., and Cecchelli, R. (1994). Upregulation of the low density lipoprotein receptor at the blood-brain barrier: Intercommunications between brain capillary ECs and astrocytes. J. Cell Biol. 126:465–474.

    PubMed  Google Scholar 

  • Denisenko, N., Burighel, P., and Citi, S. (1994). Different effects of protein kinase inhibitors on the localization of junctional proteins at cell-cell contact sites. J. Cell Sci. 107:969–981.

    PubMed  Google Scholar 

  • Denker, B. M., and Nigam, S. K. (1998) Molecular structure and assembly of the tight junction. Am. J. Physiol. 274:F1-F9.

    PubMed  Google Scholar 

  • Fabian, R. H., and Hulsebosch, C. E. (1989). Time course of penetration of xenogenic IgG into the central nervous system of the neonatal rat: An immunohistochemical and radionuclide tracer study. J. Neuroimmunol. 24:183–189.

    PubMed  Google Scholar 

  • Fallier-Becker, P., Betz, E., Wolburg-Buchholz, K., and Fotev, Z. (1991). Fibromuscular proliferates induced in vitro using a trans-filter culture system. Res. Exp. Med. 191:11–25.

    Google Scholar 

  • Farquhar, M. G., and Palade, G. E. (1963). Junctional complexes in various epithelia. J. Cell Biol. 17:375–412.

    PubMed  Google Scholar 

  • Folkman, J. (1995). Clinical applications of research on angiogenesis. N. Engl. J. Med. 333:1757–1763.

    Article  PubMed  Google Scholar 

  • Fujimoto, K. (1995). Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J. Cell Sci. 108:3443–3449.

    PubMed  Google Scholar 

  • Furuse, M., Hirase, T., Itoh, M., Nagafuchi, A., Yonemura, S., and Tsukita, S. (1993). Occludin: A novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123:1777–1788.

    Article  PubMed  Google Scholar 

  • Furuse, M., Itoh, M., Hirase, T., Nagafuchi, A., Yonemura, S., and Tsukita, S. (1994). Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J. Cell Biol. 127:1617–1626.

    PubMed  Google Scholar 

  • Furuse, M., Fujimoto, K., Sato, N., Hirase, T., and Tsukita, S. (1996). Overexpression of occludin, a tight junction-associated integral membrane protein, induces the formation of intracellular multilamellar bodies bearing tight junction-like structures. J. Cell Sci. 109:429–435.

    PubMed  Google Scholar 

  • Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K., and Tsukita, S. (1998). Claudin-1 and-2: Novel integral membrane proteins localizing at tight junctions. J. Cell Biol. 141:1539–1550.

    PubMed  Google Scholar 

  • Gerhardt, H., Liebner, S., and Wolburg, H. (1996). The pecten oculi of the chicken as a new in vivo model of the blood-brain barrier. Cell Tissue Res. 285:91–100.

    PubMed  Google Scholar 

  • Giepmans, B. N. G., and Moolenaar, W. H. (1998). The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr. Biol. 8:931–934.

    PubMed  Google Scholar 

  • Gonzales-Mariscal, L., Chavez de Ramirez, B., and Cereijido, M. (1985). Tight junction formation in cultured epithelial cells (MDCK). J. Membr. Biol. 86:113–121.

    PubMed  Google Scholar 

  • Gonzales-Mariscal, L., Contreras, R. G., Bolivar, J. J., Ponce, A., Chavez de Ramirez, B., and Cerijido, M. (1990). The role of calcium in tight junction formation between epithelial cells. Am. J. Physiol. 259:C978-C986.

    PubMed  Google Scholar 

  • Grebenkämper, K., and Galla, H.-J. (1994). Translational diffusion measurements of a fluorescent phospholipid between MDCK-1 cells support the lipid model of the tight junctions. Chem. Phys. Lipids 71:133–143.

    PubMed  Google Scholar 

  • Griepp, E. B., Dolan, W. J., Robbins, E. S., and Sabatini, D. D. (1983). Participation of plasma membrane proteins in the formation of tight junctions by cultured epithelial cells. J. Cell Biol. 96:693–702.

    PubMed  Google Scholar 

  • Gumbiner, B., and Simons, K. (1986). A functional assay for proteins involved in establishing an epithelial occluding barrier: Identification of an uvomorulin-like polypeptide. J. Cell Biol. 102:457–468.

    PubMed  Google Scholar 

  • Gumbiner, B., Stevenson, B., and Grimaldi, A. (1988). The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J. Cell Biol. 107:1575–1587.

    PubMed  Google Scholar 

  • Haskins, J, Gu, L., Wittchen, E. S., Hibbard, J., and Stevenson, B. R. (1998). ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J. Cell Biol. 141:199–208.

    PubMed  Google Scholar 

  • Hein, M., Madefessel, C., Haag, B., Teichmann, K., Post, A., and Galla, H. (1992). Reversible modulation of transepithelial resistance in high and low resistance MDCK-cells by basic amino acids, Ca2+, protamine and protons. Chem. Phys. Lipids 63:223–233.

    PubMed  Google Scholar 

  • Heiss, J. D., Papavassiliou, E., Merril, M. J., Nieman, L., Knightly, J. J., Walbridge, S., Edwards, N. A., and Oldfield, E. H. (1996). Mechanism of dexamethasone suppression of brain tumor-associated vascular permeability in rats. Involvement of the glucocorticoid receptor and vascular permeability factor. J. Clin. Invest. 98:1400–1408.

    PubMed  Google Scholar 

  • Hirase, T., Staddon, J. M., Saitou, M., Ando-Akatsuka, Y., Itoh, M., Furuse, M., Fujimoto, K., Tsukita, S., and Rubin, L. L. (1997). Occludin as a possible determinant of tight junction permeability in ECs. J. Cell Sci. 110:1603–1613.

    PubMed  Google Scholar 

  • Hirokawa, N. (1982). The intramembrane structure of tight junctions. An experimental analysis of the single-fibril and two-fibrils models using the quick-freeze method. J. Ultrastruct. Res. 80:288–301.

    PubMed  Google Scholar 

  • Howarth, A. G., Hughes, M. R., and Stevenson, B. R. (1992). Detection of the tight junction associated protein ZO-1 in astrocytes and other non-epithelial cell types. Am. J. Physiol. 262:C461-C469.

    PubMed  Google Scholar 

  • Hüttner, I., and Peters, H. (1978). Heterogenity of cell junctions in rat aortic endothelium. A freeze-fracture study. J. Ultrastruct. Res. 63:303–308.

    Google Scholar 

  • Isenmann, S., Brandner, S., Kuhne, G., Boner, J., and Aguzzi, A. (1996). Comparative in vivo and pathological analysis of the blood-brain barrier in mouse telencephalic transplants. Neuropathol. Appl. Neurobiol. 22:118–128.

    PubMed  Google Scholar 

  • Itoh, M., Nagafuchi, A., Yonemura, S., Kitaniyasuda, T., and Tsukita, S. (1993). The 220 kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction associated protein in epithelial cells-cDNA cloning and immunoelectron microscopy. J. Cell Biol. 121:491–502.

    PubMed  Google Scholar 

  • Itoh, M., Nagafuchi, A., Moroi, S., and Tsukita, S. (1997). Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to a-catenin and actin filaments. J. Cell Biol. 138:181–192.

    PubMed  Google Scholar 

  • Jesaitis, L. A., and Goodenough, D. A. (1994). Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. J. Cell Biol. 124:949–962.

    PubMed  Google Scholar 

  • Johanson, C. E. (1980). Permeability and vascularity of the developing brain: Cerebellum vs. cerebral cortex. Brain Res. 190:3–16.

    PubMed  Google Scholar 

  • Jou, T.-S., Schneeberger, E. E., and Nelson, W. J. (1998). Structural and functional regulation of tight junctions by rhoA and rac1 small GTPases. J. Cell Biol. 142:101–115.

    PubMed  Google Scholar 

  • Kemler, R. (1993). From cadherins to catenins:cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet. 9:317–332.

    PubMed  Google Scholar 

  • Keon, B. H., Schäfer, S., Kuhn, C., Grund, C., and Franke, W. W. (1996). Symplekin, a novel type of tight junction plaque protein. J. Cell Biol. 134:1003–1018.

    PubMed  Google Scholar 

  • Kniesel, U., and Wolburg, H. (1993). Tight junction complexity in the retinal pigment epithelium of the chicken during development. Neurosci. Lett. 149:71–74.

    PubMed  Google Scholar 

  • Kniesel, U., Risau, W., and Wolburg, H. (1996). Development of blood-brain barrier tight junctions in the rat cortex. Dev. Brain Res. 96:229–240.

    Google Scholar 

  • Kovbasnjuk, O. N., Szmulowicz, U., and Spring, K. R. (1998) Regulation of the MDCK tight junction. J. Membr. Biol. 161:93–104.

    PubMed  Google Scholar 

  • Kurihara, H., Anderson, J. M., and Farquhar, M. G. (1992). Diversity among tight junctions in rat kidney. Glomerular slit diaphragms and endothelial junctions express only one isoform of the tight junction protein ZO-1. Proc. Natl. Acad. Sci. USA 89:7075–7079.

    PubMed  Google Scholar 

  • Lane, N. J., Reese, T. J., and Kachar, B. (1992). Structural domains of the tight junctional intramembrane fibrils. Tissue Cell 24:291–300.

    PubMed  Google Scholar 

  • Lue, R., Marfatia, S. M., Branton, D., and Chishti, A. H. (1994). Cloning and characterization of hdlg: The human homologue of the Drosophila disc large tumor suppressor binds to protein 4.1. Proc. Natl. Acad. Sci. USA 91:9818–9822.

    PubMed  Google Scholar 

  • Mack, A., Neuhaus, J., and Wolburg, H. (1987). Relationship between orthogonal arrays of particles and tight junctions as demonstrated in cells of the ventricular wall of the rat brain. Cell Tissue Res. 248:619–625.

    PubMed  Google Scholar 

  • Madara, J. L. (1998). Regulation of the movement of solutes across tight junctions. Annu. Rev. Physiol. 60:143–159.

    PubMed  Google Scholar 

  • Madara, J. L., and Dharmasathaphorn, K. (1985). Occluding junction structure-function relationships in a cultured epithelial monolayer. J. Cell Biol. 101:2124–2133.

    PubMed  Google Scholar 

  • Madara, J. L., Barenberg, D., and Carlson, S. (1986). Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: Further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J. Cell Biol. 102:2125–2136.

    PubMed  Google Scholar 

  • Mandel, L. J., Bacallao, R., and Zampighi, G. (1993). Uncoupling of the molecular “fence” and paracellular “gate” functions in epithelial tight junctions. Nature 361:552–555.

    PubMed  Google Scholar 

  • Marcial, M. A., Carlson, S. L., and Madara, J. L. (1984). Partitioning of paracellular conductance along the ileal crypt-villus axis: A hypothesis based on structural analysis with detailed consideration of tight junction structure-function relationship. J. Membr. Biol. 80:59–70.

    PubMed  Google Scholar 

  • Martinez-Palomo, A., Meza, I., Beaty, G., and Cereijido, M. (1980). Experimental modulation of occluding junctions in a cultured transporting epithelium. J. Cell Biol. 87:736–745.

    PubMed  Google Scholar 

  • Matter, K., and Balda, M. S. (1998). Biogenesis of tight junctions: The c-terminal domain of occludin mediates basolateral targeting. J. Cell Sci. 111:511–519.

    PubMed  Google Scholar 

  • McCarthy, K. M., Skare, I. B., Stankewich, M. C., Furuse, M., Tsukita, S., Rogers, R. A., Lynch, R. D., and Schneeberger, E. E. (1996). Occludin is a functional component of the tight junction. J. Cell Sci. 109:2287–2298.

    PubMed  Google Scholar 

  • Méresse, S., Dehonk, M.-P., Delorme, P., Bensaid, M., Tauber, J.-P., Delbart, C., Fruchart, J.-C., and Cecchelli, R. (1989). Bovine brain ECs express tight junctions and monoamine oxidase activity in long-term culture. J. Neurochem. 53:1363–1371.

    PubMed  Google Scholar 

  • Meza, I., Ibarra, G., Sabanero, M., Martinez-Palomo, A., and Cereijido, M. (1980). Occluding junctions and cytoskeletal components in a cultured transporting epithelium. J. Cell Biol. 87:746–754.

    PubMed  Google Scholar 

  • Millauer, B., Shawver, L. K., Plate, K. H., Risau, W., and Ullrich, A. (1994). Glioblastoma growth inhibited in vivo by a dominant-negative flk-1 mutant. Nature 367:576–579.

    PubMed  Google Scholar 

  • Mitic, L. L., and Anderson, J. M. (1998). Molecular architecture of tight junctions. Annu. Rev. Physiol. 60:121–142.

    PubMed  Google Scholar 

  • Møllgård, K., and Saunders, N. R. (1986). The development of the human blood-brain and blood-CSF barriers. Neuropathol. Appl. Neurobiol. 12:337–358.

    PubMed  Google Scholar 

  • Moolenaar, W. H. (1995). Lysophosphatidic acid: A multifunctional phospholipid messenger. J. Biol. Chem. 270:12949–12952.

    PubMed  Google Scholar 

  • Nabeshima, S., Reese, T. S., Landis, D. M., and Brightman, M. W. (1975). Junctions in the meninges and marginal glia. J. Comp. Neurol. 164:127–170.

    PubMed  Google Scholar 

  • Nagy, Z., Peters, H., and Hüttner, I. (1984). Fracture faces of cell junctions in cerebral endothelium during normal and hyperosmotic conditions. Lab. Invest. 50:313–322.

    PubMed  Google Scholar 

  • Nico, B., Cantino, D., Bertossi, M., Ribatti, D., Sassoe, M., and Roncali, L. (1992). Tight endothelial junctions in the developing microvasculature. A thin section and freeze-fracture study in the chick embryo optic tectum. J. Submicrosc. Cytol. Pathol. 24:85–96.

    PubMed  Google Scholar 

  • Noske, W., and Hirsch, M. (1986). Morphology of tight junctions in the ciliary epithelium of rabbits during arachidonic acid-induced breakdown of the blood-aqueous barrier. Cell Tissue Res. 245:405–412.

    PubMed  Google Scholar 

  • Nusrat, A., Giry, M., Turner, J. R., Colgan, S. P., Parkos, D., Lemichez, E., Boquet, P., and Madara, J. L. (1995). Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc. Natl. Acad. Sci. USA 92:10629–10633.

    PubMed  Google Scholar 

  • Rajasekaran, A. K., Hojo, M., Huima, T., and Rodriguez-Boulan, E. (1996). Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J. Cell Biol. 132:451–464.

    PubMed  Google Scholar 

  • Rascher, G., and Wolburg, H. (1997). The tight junctions of the leptomeningeal blood-cerebrospinal fluid barrier during development. J. Brain Res. 38:525–540.

    Google Scholar 

  • Reese, T. S., and Karnovsky, M. J. (1967). Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34:207–217.

    PubMed  Google Scholar 

  • Rubin, L. L., Hall, D. E., Porter, S., Barbu, K., Cannon, C., Horner, H. C., Janatpour, M., Liaw, C. W., Manning, K., Morales, J., Tanner, L. J., Tomaselli, K. J., and Bard, F. (1991). A cell culture model of the blood-brain barrier. J. Cell Biol. 115:1725–1736.

    Google Scholar 

  • Saitou, M., Ando-Akatsuka, Y., Itoh, M., Furuse, M., Inazawa, J., Fujimoto, K., and Tsukita, S. (1997). Mammalian occludin in epithelial cells: Its expression and subcellular distribution. Eur. J. Cell Biol. 73:222–231.

    PubMed  Google Scholar 

  • Saitou, M., Fujimoto, K., Doi, Y., Fujimoto, T., Furuse, M., Takano, H., Noda, T., and Tsukita, S. (1998). Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J. Cell Biol. 141:397–408.

    PubMed  Google Scholar 

  • Sakakibara, A., Furuse, M., Saitou, M., Ando-Akatsuka, Y., and Tsukita, S. (1997). Possible involvement of phosphorylation of occludin in tight junction formation. J. Cell Biol. 137: 1393–1401.

    PubMed  Google Scholar 

  • Sandri, C., Akert, K., and Bennett, M. V. L. (1978). Junctional complexes and variations in gap junctions between spinal cord ependymal cells of a teleost, Sternarchus albifrons (Gymnotoidae). Brain Res. 143:27–41.

    PubMed  Google Scholar 

  • Satoh, H., Zhong, Y., Isomura, H., Saitoh, M., Enomoto, K., Sawada, N., and Mori, M. (1996). Localization of 7H6 tight junction-associated antigen along the cell border of vascular ECs correlates with paracellular barrier function against ions, large molecules, and cancer cells. Exp. Cell Res. 222:269–274.

    PubMed  Google Scholar 

  • Schulze, C., and Firth, J. A. (1992). Interendothelial junctions during blood-brain barrier development in the rat. Morphological changes at the level of individual tight junctional contacts. Dev. Brain Res. 69:85–96.

    Google Scholar 

  • Schulze, C., and Firth, J. A. (1993). Immunohistochemical localization of adherens junction components in blood-brain barrier microvessels of the rat. J. Cell Sci. 104:773–782.

    PubMed  Google Scholar 

  • Schulze, C., Smales, C., Rubin, L. L., and Staddon, J. M. (1997). Lysophophatidic acid increases tight junctional permeability in cultured brain ECs. J. Neurochem. 68:991–1000.

    PubMed  Google Scholar 

  • Shivers, R. R. (1979). The blood-brain barrier of a reptile, Anolis carolinensis. A freeze-fracture study. Brain Res. 169:221–230.

    PubMed  Google Scholar 

  • Simionescu, M., Simionescu, N., and Palade, G. E. (1976). Segmental differentiations of cell junctions in the vascular endothelium. Arteries and veins. J. Cell Biol. 68:705–723.

    PubMed  Google Scholar 

  • Staddon, J. M., and Rubin, L. L. (1996). Cell adhesion, cell junctions and the blood-brain barrier. Curr. Op in. Neurobiol. 6:622–627.

    Google Scholar 

  • Staddon, J. M., Herrenknecht, K., Smales, C., and Rubin, L. L. (1995). Evidence that tyrosine phosphorylation may increase tight junction permeability. J. Cell Sci. 108:609–619.

    PubMed  Google Scholar 

  • Stevenson, B. R., and Begg, D. A. (1994). Concentration-dependent effects of cytochalasin D on tight junctions and actin filaments in MDCK epithelial cells. J. Cell Sci. 107:367–375.

    PubMed  Google Scholar 

  • Stevenson, B. R., Siliciano, J. D., Mooseker, M. S., and Goodenough, D. A., (1986). Identification of ZO-1: A higher molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J. Cell Biol. 103:755–766.

    PubMed  Google Scholar 

  • Stevenson, B. R., Anderson, J. M., Goodenough, D. A. and Mooseker, M. S. (1988). Tight junction structure and ZO-1 content are identical in two strains of Madin-Darby canine kidney cells. J. Cell Biol. 107:2401–2408.

    PubMed  Google Scholar 

  • Stewart, P. A., and Hayakawa, E. M. (1987). Interendothelial junctional changes underlie the developmental “tightening” of the blood-brain barrier. Dev. Brain Res. 32:271–281.

    Google Scholar 

  • Stewart, P. A., and Hayakawa, K. (1994). Early ultrastructural changes in blood-brain barrier vessels of the rat embryo. Dev. Brain Res. 78:25–34.

    Google Scholar 

  • Stuart, R. O., and Nigam, S. K. (1995). Regulated assembly of tight junctions by protein kinase C. Proc. Natl. Acad. Sci. USA 92:6072–6076.

    PubMed  Google Scholar 

  • Stuart, R. O., Sun, A., Panichas, M., Hebert, S. C., Brenner, B. M., and Nigam, S. K. (1994). Critical role for intracellular calcium in tight junction biogenesis. J. Cell. Physiol. 159:423–433.

    PubMed  Google Scholar 

  • Suzuki, F., and Nagano, T. (1991). Three-dimensional model of tight junction fibrils based on freeze-fracture images. Cell Tissue Res. 264:381–384.

    PubMed  Google Scholar 

  • Takeda, H., and Tsukita, S. (1995). Effects of tyrosine phosphorylation on tight junctions in temperature-sensitive v-src-transfected MDCK. Cell Struct. Funct. 20:387–393.

    PubMed  Google Scholar 

  • Tao-Cheng, J.-H., Nagy, Z., and Brightman, M. W. (1987). Tight junctions of brain endothelium in vitro are enhanced by astroglia. J. Neurosci. 7:3293–3299.

    PubMed  Google Scholar 

  • Tontsch, U., and Bauer, H. C. (1991). Glial cells and neurons induce blood brain barrier related enzymes in cultured cerebral ECs. Brain Res. 539:247–253.

    PubMed  Google Scholar 

  • Van Deurs, B., and Koehler, J. K. (1979). Tight junctions in the choroid plexus epithelium. A freeze-fracture study including complementary replicas. J. Cell Biol. 80:662–673.

    PubMed  Google Scholar 

  • Van Itallie, C. M., and Anderson, J. M. (1997). Occludin confers adhesiveness when expressed in fibroblasts. J. Cell Sci. 110:1113–1121.

    PubMed  Google Scholar 

  • Van Itallie, C. M., Balda, M. S., and Anderson, J. M. (1995). Epidermal growth factor induces tyrosine phosphorylation and reorganization of the tight junction protein ZO-1 in A431 cells. J. Cell Sci. 108:1735–1742.

    PubMed  Google Scholar 

  • Van meer, G., and Simons, K. (1986). The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J. 5:1455–zz1464.

    PubMed  Google Scholar 

  • Van Meer, G., Gumbiner, B., and Simons, K. (1986). The tight junction does not allow lipid molecules to diffuse from one epithelial cell to the next. Nature 322:639–641.

    PubMed  Google Scholar 

  • Wakai, S., and Hirokawa, N. (1978). Development of the blood-brain barrier to horseradish peroxidase in the chick embryo. Cell Tissue Res. 195:195–203.

    PubMed  Google Scholar 

  • Willott, E., Balda, M. S., Heintzelman, M., Jameson, B., and Anderson, J. M. (1992). Localization and differential expression of two isoforms of the tight junction protein ZO-1. Am. J. Physiol. 262:C1119-C1124.

    PubMed  Google Scholar 

  • Willott, E., Balda, M. S., Fanning, A. S., Jameson, B., Van Itallie, C., and Anderson, J. M. (1993). The tight junction protein ZO-1 is homologus to the Drosophila discs-large tumor suppressor protein of septate junctions. Proc. Natl. Acad. Sci. USA 90:7834–7838.

    PubMed  Google Scholar 

  • Wolburg, H., and Risau, W. (1995). Formation of the blood-brain barrier. In Kettenmann, H., and Ransom B. R. (eds.), Neuroglia, Oxford University Press, New York, Oxford, pp. 763–776.

    Google Scholar 

  • Wolburg, H., Kästner, R., and Kurz-Isler, G. (1983). Lack of orthogonal particle assemblies and presence of tight junctions in astrocytes of goldfish. A freeze-fracture study. Cell Tissue Res. 234:389–402.

    PubMed  Google Scholar 

  • Wolburg, H., Neuhaus, J., Kniesel, U., Krauss, B., Schmid, E.-M., Öcalan, M. Farrell, C., and Risau, W. (1994). Modulation of tight junction structure in blood-brain barrier ECs. Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci. 107:1347–1357.

    Google Scholar 

  • Wong, V., and Gumbiner, B. M. (1997). A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J. Cell Biol. 136:399–409.

    PubMed  Google Scholar 

  • Woods, D. F., and Bryant, P. J. (1991). The disc large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 66:451–464.

    PubMed  Google Scholar 

  • Zhong, Y., Enomoto, K., Isomura, H., Sawada, N., Minase, T., Oyamada, M., Konishi, Y., and Mori, M. (1994). Localization of the 7H6 antigen at tight junctions correlates with the paracellular barrier function of MDCK cells. Exp. Cell Res. 214:614–620.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kniesel, U., Wolburg, H. Tight Junctions of the Blood–Brain Barrier. Cell Mol Neurobiol 20, 57–76 (2000). https://doi.org/10.1023/A:1006995910836

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006995910836

Navigation