Skip to main content
Log in

Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex

  • Published:
Journal of Neurocytology

Abstract

We have compared the distribution of unipolar brush cells (UBCs) in the cerebellum of Brazilian opossum (Monodelphis domestica), mouse, guinea pig, rabbit, cat, and Rhesus monkey, using an antiserum to calretinin which is present in those cells. The morphology and calretinin staining intensity of the UBCs remains constant across species. As a general trend, in all species studied, UBCs are particularly enriched in the vestibulocerebellum. Interspecies differences, however, were noted in the distribution of UBCs across other regions of the cerebellar cortex. A major variation involves the extent of the UBC-rich region of the ventral portion of the paraflocculus. The distribution of UBCs in non-vestibular vermal folia also varies substantially. UBCs are deployed in more or less distinct parasagittal zones in the vermis of the opossum, rabbit, cat, and macaque. The density of UBCs decreases progressively from medial to lateral portions of the same folium and is lowest in the lateral, posterior portions of the cerebellar hemispheres (crus II) and in the dorsal portion of the paraflocculus. In cat and macaque, the decrease in the density of UBCs across the intermediate cortex is more gradual than in the other species. The data indicate that the UBCs play a more prominent role in the modulation of sensorimotor transformations in carnivores and primates than in smaller mammals and should not be considered a vestigial form of neuron. In addition to the UBCs, calretinin antibody distinctly stains the following neurons in different species: granule cells and parallel fibers in all species except rabbit and cat; Golgi cells, especially in rat and macaque; Lugaro-like cells, especially in mouse, rat, and macaque; basket cells in macaque; subsets of mossy fibers in all species; and subsets of climbing fibers in all species but guinea pig. Usually, the distribution of UBCs is related to that of calretinin stained granule cells and mossy fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott, L. C. & Jacobowitz, D. M. (1995)Development of calretinin-immunoreactive unipolar brush-like cells and an afferent pathway to the embryonic and early postnatal mouse cerebellum. Anatomy and Embryology 191, 541–59.

    Google Scholar 

  • Altman, J. & Bayer, S. A. (1977) Time of origin and distribution of a new cell type in the rat cerebellar cortex. Experimental Brain Research 29, 265–74.

    Google Scholar 

  • Arai, R., Jacobowitz, D. M. & Deura, S. (1993) Ultrastructural localization of calretinin immunoreactivity in lobule V of the rat cerebellum.Brain Research 613, 300–04.

    Google Scholar 

  • Arai, R., Winsky, L., Arai, M. & Jacobowitz, D. M. (1991) Immunohistochemical localization of calretinin in the rat hindbrain. Journal of Comparative Neurology 310, 21–44.

    Google Scholar 

  • BerthiÉ, B. & Axelrad, H. (1994) Granular layer collaterals of the unipolar brush cell axon display rosette-Calretinin immunoreactivity in mammalian cerebellum 121 like excrescences. A Golgi study in the rat cerebellar cortx. Neuroscience Letters 167, 161–65.

    Google Scholar 

  • Blanks, R. (1988) Cerebellum. In Reviews of Oculomotor Research Vol.2: Neuroanatomy of the Oculomotor System (edited by BÑttner-ennever New York, J. A.) pp. 225–72. New York: Elsevier

    Google Scholar 

  • Braak, E. & Braak, H. (1993) The new monodendritic neuronal type within the adult human cerebellar granular cell layer shows calretinin-immunoreactivity. Neuroscience Letters 154, 199–202.

    Google Scholar 

  • BÑttner, U. & BÑttner-ennever, J. A. (1988) Present concepts of oculomotor organization. In Reviews of Oculomotor Research Vol.2: Neuroanatomy of the Oculomotor System (edited by BÑttner-ennever, J. A.) pp. 3–32. New York: Elsevier.

    Google Scholar 

  • Cajal, S. Ry. (1911) Histologie du Système Nerveux de l'Homme et des Vertébrés Vols. I and II (translated by Azoulay, L.) pp. 3–32.Paris: Maloine.

    Google Scholar 

  • Celio, M. R. (1990). Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35, 375–475.

    Google Scholar 

  • Celio, M. R. Pauls, T. & Schwaller, B. (1996). Guidebook to the Calcium-Binding Proteins. New York: Oxford University Press.

    Google Scholar 

  • Cozzi, M. G., Rosa, P., Greco, A., Hille, A., HÑttner, W. B., Zanini, A. & DECamilli, P. (1989) Immunohistochemical localization of secretogranin II in the rat cerebellum. Neuroscience 28, 423–41.

    Google Scholar 

  • De castro, F., Cobos, I, Puelles, L. & Martinez, S. (1998) Calretinin in pretecto-and olivocerebellar projections in the chick: immunocytochemical and experimental study.Journal of Comparative Neurology 397, 149–62.

    Google Scholar 

  • DiÑo, M. R. & Mugnaini, E. (1995) Calretinin immunoreactive unipolar brush cells form parasagittal bands in the rabbit cerebellum. Society for Neuroscience Abstracts 25, x–xxx.

    Google Scholar 

  • DiÑo, M. R., Peracchio, A. A. & Mugnaini, E. (1997) Unipolar brush cells are targets of primary vestibular afferents. Society for Neuroscience Abstracts 27.

  • Dufosse, M., Ito, M. & Miyashita, Y. (1977) Functional localization in the rabbit's cerebellar flocculus determined in relationship with eye movements.Neuroscience Letters 5, 273–77.

    Google Scholar 

  • Eccles, J. C., Ito, M. & Szentagothai, J. (1967) The Cerebellum as a NeuronalMachine.New York: Springer Verlag.

    Google Scholar 

  • Floris, A., DiÑo, M. R., Jacobowitz, D. M. & Mugnaini, E. (1994) The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretininpositive: a study by light and electron microscopic immunocytochemistry. Anatomy and Embryology 189, 495–520.

    Google Scholar 

  • Fortin, M., Marchand, R. & Parent, A. (1998) Calcium-binding proteins in primate cerebellum. Neuroscience Research 30, 155–68.

    Google Scholar 

  • Fox, C. A., Hillman, D. E., Siegesmund, K. A. & Dutta, C. R. (1967) The primate cerebellar cortex: AGolgi and electron microscopic study. Progress in Brain Research 25, 174–225.

    Google Scholar 

  • Gerrits, N. M. & Voogd, J. (1989) The topographical organization of climbing and mossy fiber afferents in the flocculus and the ventral paraflocculus in rabbit, cat and monkey. In The Olivocerebellar System in Motor Control (edited by Strata, P.) pp. 26–29. Experimental Brain Research Series 17: Berlin: Springer-Verlag.

    Google Scholar 

  • Gerrits, N. M. & Voogd, J. (1982) The climbing fiber projection to the flocculus and adjacent paraflocculus in the cat. Neuroscience 7,2971–91.

    Google Scholar 

  • Harris, J., Moreno, S., Shaw, G. & Mugnaini, E. (1993) Unusual neurofilament composition in cerebellar unipolar brush neurons. Journal of Neurocytology 22, 1039–59.

    Google Scholar 

  • Hockfield, S. (1987) A Mab to a unique cerebellar neuron generated by immunosuppression and rapid immunization. Science 237, 67–70.

    Google Scholar 

  • Jaarsma, D., Wenthold, R. J. & Mugnaini, E. (1995) Glutamate receptor subunits at mossy fiberunipolar brush cell synapses: Light and electron microscopic immunocytochemical study in cerebellar cortex of rat and cat. Journal of Comparative Neurology 357, 145–60.

    Google Scholar 

  • Jaarsma, D., DiÑo, M. R., Cozzari, C. & Mugnaini, E. (1996) Cerebellar choline acetyltransferase positive mossy fibres and their granule and unipolar brush cell targets: A model for central cholinergic nicotinic neurotransmission. Journal of Neurocytology 25, 829–42.

    Google Scholar 

  • Jaarsma, D., DiÑo, M. R., Ohishi, H., Shigemoto, R. & Mugnaini, E. (1998). Metabotropic receptors are associated with non-synaptic appendages of unipolar brush cells in rat cerebellar cortex and cochlear nuclear complex. Journal of Neurocytology 27, 303–27.

    Google Scholar 

  • Kitahara, T., Takeda, N., Emson, P. C., Kubo, T. & Kiyama, H. (1997). Changes in nitric oxide synthase-like immunoreactivities in unipolar brush cells in the rat cerebellar flocculus after unilateral labyrinthectomy. Brain Research 765, 1–6.

    Google Scholar 

  • Koekkoek, S. K. E., Alphen, A. M. V., Burg, J. V. D., Grosveld, F., Galjart, N. & De zeeuw, C. I. (1997) Gain adaptation and phase dynamics of compensatory eye movements in mice. Genes and Function 1, 175–90.

    Google Scholar 

  • LainÉ, J. & Axelrad, H. (1996) Morphology of the Golgi-impregnated Lugaro cell in the rat cerebellar cortex: A reappraisal with a description of its axon. Journal of Comparative Neurology 375, 618–40.

    Google Scholar 

  • Langer, T., Fuchs, A. F., Scudder, C. A. & Chubb, M. C. (1985a) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 235, 1–25.

    Google Scholar 

  • Langer, T., Fuchs, A. F., Chubb, M. C., Scudder, C. A. & Lisberger, S. G. (1985b) Floccular efferents in the rhesus macaque as revealed by autoradiography and horseradish peroxidase. Journal of Comparative Neurology 235, 26–37.

    Google Scholar 

  • Larsell, O. (1970) The Comparative Anatomy and Histology of the Cerebellum from Monotremes Through Apes. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Mugnaini, E. (1972). The histology and cytology of the cerebellar cortex. In The Comparative Anatomy and Histology of the Cerebellum.The Human Cerebellum, Cerebellar Connections, and Cerebellar Cortex. (edited by Larsell, O. & Jansen, J.) pp. 201–64.Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Mugnaini, E. & Dahl, A-L. (1983) Zinc-aldehyde fixation for light-microscopic immunocytochemistry of nervous tissues.Journal of Histochemistry and Cytochemistry 311, 435–1438.

    Google Scholar 

  • Mugnaini, E. & Floris, A. (1994) The unipolar brush cell: A neglected neuron of the mammalian cerebellar cortex. Journal of Comparative Neurology 339, 174–80.

    Google Scholar 

  • Mugnaini, E., DiÑo, M. R. & Jaarsma, D. (1997) The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry.Progress in Brain Research 114, 131–49.

    Google Scholar 

  • Mugnaini, E., Floris, A. & Wright-goss, M. (1994) Extraordinary synapses of unipolar brush cell: an electron microscopic study in the rat cerebellum. Synapse 16, 284–311.

    Google Scholar 

  • Munoz, D. G. (1990) Monodendritic neurons: A cell type in the human cerebellar cortex identified by chromogranin A-like immunoreactivity.Brain Research 528, 335–38.

    Google Scholar 

  • Nelson, B. & Mugnaini, E. (1991) The GABAergic cerebello-olivary projection in the rat. Anatomy and Embryology 184, 225–43.

    Google Scholar 

  • Noda, H. (1991) Cerebellar control of saccadic eye movements: Its neural mechanisms and pathways. Japanese Journal of Physiology 41, 351–68.

    Google Scholar 

  • Oberdick, J., Redd, D., Bian, F., Ostrowski, M. & Berrebi, A. S. (1996)Selective pertubation of the vestibulocerebellum in transgenic mice. Soceity for Neuroscience Abstracts 26, x–xxx.

    Google Scholar 

  • Palay, S. L. & Chan-palay, V. (1974) Cerebellar Cortex: Cytology and Organization.New York: Springer Verlag.

    Google Scholar 

  • RÉsibois, A. & Rogers, J. H. (1992) Calretinin in rat brain: An immunohistochemical study.Neuroscience 46, 101–34.

    Google Scholar 

  • RÉsibois, A., Cuvelier, L. & Goffine t, A. M. (1997) Abnormalities in the cerebellum and brainstem in homozygous lurcher mice. Neuroscience 80, 175–90.

    Google Scholar 

  • Rogers, J. H. (1989) Immunoreactivity for calretinin and other calcium-binding proteins in cerebellum.Neuroscience 31, 711–21.

    Google Scholar 

  • Rossi, D. J., Mugnaini, E. & Slater, N. T. (1994) Glutamate receptor-mediated transmission at a novel giant synapse in rat cerebellum: The mossy fiber-unipolar brush cell synapse.Brain Research Association Abstracts 11, 29.

    Google Scholar 

  • Rossi, D. J., Alford, S., Mugnaini, E. & Slater, N. T. (1995) Time course of transmission at a giant glutamatergic synapse in cerebellum, the mossy fiber-unipolar brush cell synapse. Journal of Neurophysiology 74,24–42.

    Google Scholar 

  • Ruigrok, T. J., Osse, R. J. & Voogd, J. (1992) Organization of inferior olivary projections to the flocculus and ventral paraflocculus of the rat cerebellum.Journal of Comparative Neurology 316, 129–50.

    Google Scholar 

  • Schuerger, R. J., DiÑo, M. R., Liu, Y. B., Slater, N. T. & Mugnaini, E. (1997) Light and electron micrscopic identification of the axon terminals and postsynaptic targets of cerebellar unipolar brush cells. Society for Neuroscience Abstracts 27, x–xxx.

    Google Scholar 

  • Scotti, A. L. (1995) Calbindin D28k in the olivocerebellar projection: Alight and electron microscope study. Journal of Anatomy 187, 649–59.

    Google Scholar 

  • Smith, G. E. (1903) Further observations of the natural mode of subdivision of the mammalian cerebellum. Anatomische Anzeiger 23, 368–84.

    Google Scholar 

  • Slater, N. T., Rossi, D. J. & Kinney, G. A. (1997) Physiology of transmission at a giant glutamatergic synapse in cerebellum.Progress in Brain Research 114, 151–63.

    Google Scholar 

  • Slater, N. T., DiÑo, M. R., Jaarsma, D. & Mugnaini, E. (1998) Physiology and ultrastructure of unipolar brush cells in the vestibulocerebellum. In Neurochemistry of the Vestibular System (edited by BETZ, A. & Anderson, J.) Orlando, Florida: CRC Press (in press).

    Google Scholar 

  • ŠpaČek, J., Pa?izek, J. & Lieberman, A. R. (1973) Golgi cells, granule cells and synaptic glomeruli in the molecular layer of the rabbit cerebellar cortex.Journal of Neurocytology 2, 407–28.

    Google Scholar 

  • Tan, J., Epema, A. H. & Voogd, J. (1995a) Zonal organization of the flocculovestibular nucleus projection in the rabbit: a combined axonal tracing and acetylcholinesterase histochemical study.Journal of Comparative Neurology 356, 51–71.

    Google Scholar 

  • Tan, J., Gerrits, N. M., Nanhoe, R., Simpson, J. I. & Voogd, J. (1995b) Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit: a combined axonal tracing and acetylcholinesterase histochemical study. Journal of Comparative Neurology 356, 23–50.

    Google Scholar 

  • Voogd, J., Gerrits, N. M & Hess, D. T. (1987) Parasagittal zonation of the cerebellum in macaques. In Cerebellum and Neuronal Plasticity (edited by Glickstein, M., Yeo, C. & Stein, J.) pp. 15–40.New York: Plenum Press.

    Google Scholar 

  • Voogd, J., Gerrits, N. M. & Ruigrok, T.J. (1996) Organization of the vestibulocerebellum.Annals of the New York Academy of Sciences 781, 553–79.

    Google Scholar 

  • Voogd, J., Jaarsma, D. & Marani, E. (1995) The cerebellum: Chemoarchitecture and anatomy. In Handbook of Chemical Neuroanatomy (edited by BjÖrklund, A. & HÖkfelt, T.) pp. 1–370.Amsterdam: Elsevier.

    Google Scholar 

  • Winsky, L. & Jacobowitz, D. M. (1995)Effects of unilateral cochlea ablation on the distribution of calretinin mRNAand immunoreactivity in the guinea pig ventral cochlear nucleus. Journal of Comparative Neurology 354, 564–82.

    Google Scholar 

  • Winsky, L., Nakata, H., Martin, B. M. & Jacobowitz, D. M. (1989) Isolation, partial amino acid sequence, and immunocytochemical localization of a brain-specific calcium binding protein.Proceedings of the National Academy of Sciences USA 86, 10139–43.

    Google Scholar 

  • Yamamoto, M. (1979) Topographical representation in rabbit cerebellar flocculus for various afferent inputs from the brainstem investigated by means of retrograde axonal transport of horseradish peroxidase.Neuroscience Letters 12, 29–34.

    Google Scholar 

  • Yan, X. X. & Garey, L. J. (1996) Calretinin immunoreactivity in the monkey and cat cerebellum: cellular localisation and modular distribution. Journal für Hirnforschung 37, 409–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiÑO, M.R., Willard, F.H. & Mugnaini, E. Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex. J Neurocytol 28, 99–123 (1999). https://doi.org/10.1023/A:1007072105919

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007072105919

Navigation