Skip to main content
Log in

Tau Protein Function in Axonal Formation

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Tau protein is a predominantly neuronal microtubule-associated protein that is enriched in axons and is capable of promoting microtubule assembly and stabilization. In the present article we review some of the key experiments directed to obtain insights about tau protein function in developing neurons. Aspects related to whether or not tau has essential, unique, or complementary functions during axonal formation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mitchison, T., and Kirschner, M. W. 1988. Cytoskeletal dynamics and nerve growth. Neuron 1:761-772.

    Google Scholar 

  2. Kirschner, M., and Mitchison, T. 1986. Beyond self-assembly: from microtubules to morphogenesis. Cell 45:329-342.

    Google Scholar 

  3. Lee, G. 1993. Non-motor microtubule-associated proteins. Curr. Op. Cell Biol. 5:88-94.

    Google Scholar 

  4. Avila, J., Dominguez, J., and Diaz-Nido, J. 1994. Regulation of microtubule dynamics by microtubule-associated protein expression and phosphorylation during neuronal development. Int. J. Dev. Biol. 38:13-25.

    Google Scholar 

  5. Maccioni, R., and Cambiazo, V. 1995. Role of microtubule-associated proteins in the control of microtubule assembly. Physiol. Rev. 75:835-864.

    Google Scholar 

  6. Brady, S., and Sperry, A. 1995. Biochemical and functional diversity of microtubule motors in the nervous system. Curr. Op. Neurobiol. 5:551-558.

    Google Scholar 

  7. Hirokawa, N. 1998. Kinesin and dyenin superfamily proteins and the mechanism of organelle transport. Science 279:519-526.

    Google Scholar 

  8. Kosik, K. S. 1997. Tau structure and function; in pages 43-52; J. Avila, R. Brandt, and K. S. Kosik) (eds.) Brain Microtubule Associated Proteins Amsterdam Harwood Academic Publishers.

  9. Weingarten, M., Lockwood, A., Hwo, S-Y., and Kirschner, M. 1976. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA 72:1858-1862.

    Google Scholar 

  10. Binder, L., Frankfurter, A., Rebhun, L. 1985. The distribution of tau in the mammalian central nervous system. J. Cell Biol. 101:1371-1378.

    Google Scholar 

  11. Ferreira, A., Busciglio, J., and Caceres, A. 1989. Microtubule formation and neurite growth in cerebellar macroneurons which develop in vitro: Evidence for the involvement of the microtubule-associated proteins MAP-1a, HMW-MAP2 and Tau. Dev. Brain Res. 49:215-228.

    Google Scholar 

  12. Black, M., Slaughter, T., Moshiach, S., Obrocka, M., Fisher, I. 1996. Tau is enriched on dynamic microtubules in the distal region of growing axons. J. Neurosci. 16:3601-3619.

    Google Scholar 

  13. Papasozomenos, Ch., and Binder, L. 1987. Phosphorylation determines two distinct species of tau in the central nervous system. Cell Motil. Cytoskel. 8:210-226.

    Google Scholar 

  14. Ferreira, A., Busciglio, J., and Caceres, A. 1987. An immunocytochemical analysis of the ontogeny of the microtubule-associated protein MAP-2 and Tau in the nervous system of the rat. Dev. Brain Res. 34:9-31.

    Google Scholar 

  15. Brandt, R., and Lee, G. 1993. Functional organization of microtubule-associated protein tau: Identification of regions which affect microtubule growth, nucleation, and bundle formation in vitro. J. Biol. Chem. 268:3414-3419.

    Google Scholar 

  16. Brandt, R., Leger, J., and Lee, G. 1995. Interaction of tau with the neural plasma membrane mediate by tau's aminoterminal domain. J. Cell Biol. 131:1327-1340.

    Google Scholar 

  17. Trinczek, B., Biernat, J., Baumann, K., Mandelkow, E., and Mandelkow, E. 1995. Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules. Mol. Biol. Cell 6:1887-1902.

    Google Scholar 

  18. Drechsel, D., Hyman, A., Cobb, M., and Kirschner, M. 1992. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 3: 1141-1154.

    Google Scholar 

  19. Drubin, D., and Kirschner, M. 1986. Tau protein function in living cells. J. Cell Biol. 103:2739-2746

    Google Scholar 

  20. Kanai, Y., Takemura, R., Oshima, T., Mori, H., Ihara, Y., Yanagisawa, M., Masaki, T., and Hirokawa, N. 1989. Expression of multiple tau isoformas and microtubule bundle formation in fibroblasts transfected with a single tau cDNA. J. Cell Biol. 109:1173-1184.

    Google Scholar 

  21. Kanai, Y., Chen, J., and Hirokawa, N. 1992. Microtubule bundling by tau proteins in vivo: analysis of functional domains. EMBO J. 11:3953-3961.

    Google Scholar 

  22. Lee, G., and Rook, S. 1992. Expression of tau protein in nonneuronal cells: microtubule bundling and stabilization. J. Cell Sci. 102:227-237.

    Google Scholar 

  23. Drubin, D. G., Feinstein, S. C., Shooter, E. M., and Kirschner, M. 1985. Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly promoting factors. J. Cell Biol. 101:1799-1807.

    Google Scholar 

  24. Esmaeli-Azad, B., McCarty, J., and Feinstein, S. C. 1994. Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neurite stability. J. Cell Sci. 107:869-879.

    Google Scholar 

  25. Caceres, A., and Kosik, K. 1990. Inhibition of neurite polarity by antisense oligonucleotides in primary cerebellar neurons. Nature 343:461-463.

    Google Scholar 

  26. Ferreira, A., and Caceres, A. 1989. The expression of acetylated microtubules during axonal and dendritic growth in cerebellar macroneurons which develop in vitro. Dev. Brain Res. 49:205-213.

    Google Scholar 

  27. DiTella, M., Feiguin, F., Carri, N., Kosik, K., and Caceres, A. 1996. MAP1B/tau functional redundancy during laminin-enhanced axonal growth. J. Cell Sci. 109:467-477.

    Google Scholar 

  28. Caceres, A., Mautino, J., and Kosik, K. 1992. Suppression of MAP-2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 9:607-618.

    Google Scholar 

  29. Hanemaaijer, R., and Ginzburg, I. 1991. Involvement of mature tau isoforms in the stabilization of neurites in PC12 cells. J. Neurosci. Res. 30:163-171.

    Google Scholar 

  30. Leger, J. G., Brandt, R., and Lee, G. 1994. Identification of tau protein regions required for process formation in PC12 cells. J. Cell Sci. 107:3403-3412.

    Google Scholar 

  31. Knops, L., Kosik, K., Lee, G., Pardee, J., Cohen-Gould, L., and McColongue, L. 1991. Overexpression of tau in nonneuronal cell induces long cellular processes. J. Cell Biol. 114: 725-734.

    Google Scholar 

  32. Chen, J., Kanai, Y., Cowan, N., and Hirokawa, N. 1992. Projection domains of MAP1 and tau determine spacings between microtubules in dendrites and axons. Nature 360:674-677.

    Google Scholar 

  33. Baas, P. W., Pienkowski, T., and Kosik, K. 1991. Processes induced by tau expression in Sf9 cells have an axon-like microtubule organization. J. Cell Biol. 115:1333-1344.

    Google Scholar 

  34. Lee, G., Newman, T., Gard, D., Band, P., and Panchamoorthy, G. (1998) Tau interacts with src-family non receptor tyrosine kinases. J. Cell Sci. 111:3167-3177.

    Google Scholar 

  35. Bixby, J., and Jhabvala, P. 1993. Tyrosine phosphorylation in early embryonic growth cones. J. Neurosci. 13:3421-3432.

    Google Scholar 

  36. Helmke, S., and Pfenninger, K. 1996. Growth cone enrichment and cytoskeletal association of non-receptor tyrosine kinases. Cell Motil. Cytoskel. 30:194-207.

    Google Scholar 

  37. Wu, D., and Goldberg, D. 1993. Regulated tyrosine phosphorylation at the tips of growth cone filopodia. J. Cell Biol. 123:653-64.

    Google Scholar 

  38. Lohse, K., Helmke, S., Wood, M., Quiroga, S., de la Houssaye, B., Miller, V., Negre-Aminou, P., and Pfenninger, K. 1996. Axonal origin and purity of growth cones isolated from fetal rat brain. Dev. Brain Res. 96:83-96.

    Google Scholar 

  39. Beggs, H., Soriano, P., and Maness, P. 1994. NCAM-dependent neurite outgrowth is inhibited in neurons from fyn-minus mice. J. Cell Biol. 127:825-833.

    Google Scholar 

  40. Ignelzi, M., Miller, D., Soriano, P., and Maness, P. 1994. Impaired neurite outgrowth of src-minus cerebellar neurons on the cell adhesion molecule L1. Neuron 12:873-884.

    Google Scholar 

  41. Mandell, J., and Banker, G. 1995. The microtubule cytoskeleton and the development of neuronal polarity. Neurobiol. Aging 16:229-237.

    Google Scholar 

  42. Mandell, J., and Banker, G. 1996. Microtubule-associated proteins, phosphorylation gradients and the establishment of neuronal polarity. Perspect. Dev. Neurobiol. 4:125-135.

    Google Scholar 

  43. Kempf, M., Clement, A., Faissner, A., Lee, G., and Brandt, R. 1996. Tau binds to the distal axon early in development of polarity in a microtubule-and microfilament-dependent manner. J. Neurosci. 16:5563-5592.

    Google Scholar 

  44. DiTella, M., Feiguin, F., Morfini, G., and Caceres, A. 1994. Microfilament-associated growth cone component depends upon Tau for its intracellular localization. Cell Motil. Cytosk. 29: 117-130.

    Google Scholar 

  45. Harada, A., Oguchi, K., Okabe, S., Kuno, J., Terada, S., Ohshima, T., Sato-Yoshitake, R., Takel, Y., Noda, T., and Hirokawa, N. 1994. Altered microtubule organization in small calibre axons of mice lacking tau protein. Nature 369:488-491.

    Google Scholar 

  46. Chamack, B., and Prochiantz, A. 1988. Influence of extracellular matrix proteins on the expression of neuronal polarity. Development 106:483-491.

    Google Scholar 

  47. Lein, P. J., and Higgins, D. 1989. Laminin and a basement membrane extract have different effects on axonal and dendritic outgrowth fro embryonic rat sympathetic neurons in vitro. Dev. Biol. 136:330-345.

    Google Scholar 

  48. Lein, P. J., Banker. G., and Higgins, D. 1992. Laminin selectively enhances axonal growth and accelerates the development of polarity by hippocampal neurons in culture. Dev. Brain Res. 69:191-197.

    Google Scholar 

  49. Lochter, A., and Schachner, M. 1993. Tenascin and extracellular matrix glycoproteins: From promotion to polarization of neurite growth in vitro. J. Neurosci. 13:3986-4000.

    Google Scholar 

  50. Tint. I., Slaughter, T., Fisher, I., and Black, M. 1998. Acute inactivation of tau has no effect on dynamics of microtubules in growing axons of cultured sympathetic neurons. J. Neurosci. 18:8660-8673.

    Google Scholar 

  51. Brown, A., Slaughter, T., and Black, M. 1992. Newly assembled microtubules are concentrated in the proximal and distal regions of growing axons. J. Cell Biol. 119:867-882.

    Google Scholar 

  52. Li, Y., and Black, M. 1996. Microtubule assembly and turnover in growing axons. J. Neurosci. 16:531-544.

    Google Scholar 

  53. Lovestone, S., and Reynolds, C. H. 1997. The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience 78:309-324.

    Google Scholar 

  54. Kaech, S., Ludin, B., and Matus, A. 1996. Cytoskeletal plasticity in cells expressing neuronal microtubule-associated proteins. Neuron 17:1189-1199.

    Google Scholar 

  55. Brugg, B., and Matus, A. 1988. PC12 cells express juvenile microtubule-associated proteins during nerve growth factor-induced neurite outgrowth. J. Cell Biol. 107:643-650.

    Google Scholar 

  56. Brugg, B,, Reddy, D., and Matus, A. 1993. Attenuation of microtubule-associated protein 1B expression by antisense oligodeoxinucleotides inhibits initiation of neurite outgrowth. Neuroscience 52:489-496.

    Google Scholar 

  57. Sato-Yoshitake, R., Shiomura, Y., Miyasaka, H., and Hirokawa, N. 1989. Microtubule-associated protein 1B: Molecular structure, localization, and phosphorylation-dependent expression in developing neurons. Neuron 3:229-238.

    Google Scholar 

  58. Ferreira, A., and Caceres, A. 1991. Estrogen-enhanced neurite growth: Evidence for a selective induction of Tau and stable microtubules. J. Neurosci. 11:392-400.

    Google Scholar 

  59. Ferreira, A., Busciglio, J., Landa, C., and Caceres, A. 1990. Ganglioside-enhanced neurite growth: Evidence for a selective induction of high molecular weight MAP2. J. Neurosci. 10: 293-302.

    Google Scholar 

  60. Pigino, G., Paglini., G., Ulloa, L., Avila, J., and Caceres, A. 1997. The expression and function of cdk5 during process extension in primary cultured neurons. J. Cell Sci. 110:257-270.

    Google Scholar 

  61. Paglini, G., Pigino, G., Morfini, G., Kunda, P., Maccioni, R., Quiroga, S., Ferreira, A., and Caceres, A. 1998. Evidence for the participation of the neuron-specific activator p35 during laminin-enhanced axonal growth. J. Neurosci. 18:9858-9869.

    Google Scholar 

  62. Takei, Y., Kondo, S., Harada, A., Inomata, S., Noda, T., and Hirokawa, N. 1997. Delayed development of nervous system in mice homozygous for disrupted microtubule-associated protein 1B (MAP1B) gene. J. Cell Biol. 137:1615-1626.

    Google Scholar 

  63. Takei, Y., Junlin, T., Harada, A., Inomata-Terada, S., and Hirokawa, N. 1998. Mol. Biol. Cell 9:394a.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paglini, G., Peris, L., Mascotti, F. et al. Tau Protein Function in Axonal Formation. Neurochem Res 25, 37–42 (2000). https://doi.org/10.1023/A:1007531230651

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007531230651

Navigation