Skip to main content
Log in

Effects of All-Trans-Retinoic Acid (atRA) on Inducible Nitric Oxide Synthase (iNOS) Activity and Transforming Growth Factor Beta-1 Production in Experimental Anti-GBM Antibody-Mediated Glomerulonephritis

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Sustained high output release of Nitric oxide (NO) as result of activation of inducible nitric oxide synthase (iNOS), and increased production of the antiproliferative/profibrotic cytokine transforming growth factor-β1 (TGF-β1) are well documented in glomerulonephritis. Modulation of iNOS activity and of TGF-β1 production can therefore be viewed as anti-inflammatory strategies. The present study employed all-trans retinoic acid (atRA) which is known to have anti-inflammatory effects and to modulate expression of iNOS and TGF-β1, in order to explore its effect on iNOS enzyme activity and TGF-β1 production in anti-GBM antibody induced glomerulonephritis. Glomerulonephritis was induced in Lewis rats by injection of anti-GBM antibody. A group of nephritic rats were given daily administration of atRA for 14–16 days. Extent of proteinuria was assessed by measuring urine protein and creatinine excretion. iNOS enzyme activity was measured by calculating conversion of L[14C]arginine to L-[14C]citrulline in glomerular protein lysates. Levels of TGF-β1 in glomerular protein lysates were measured by quantitative ELISA. Levels of proliferating nuclear antigen (PCNA), TGF-β receptor II (TGFβ-RII), and fibronectin were assessed by Western blot analysis. Glomerular iNOS activity in atRA treated nephritic animals was attenuated in comparison to that in nephritic controls that were not. Glomerular expression of PCNA was also reduced. Levels of TGF-β1 were increased in glomeruli of atRA treated nephritic animals. In these animals, there was no change in glomerular levels of TGF-β receptor II (TGFβ-RII) or fibronectin, and there was no reduction in urine protein excretion. These results suggest that atRA attenuates iNOS activity and proliferation in glomeruli of nephritic animals. The failure of atRA treatment to reduce proteinuria could be due to the increase in TGF-β1 levels and to inhibition of iNOS-driven NO production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cattell, V., E. A. Lianos, P. Largen, and T. Cook. 1993. Glomerular NO synthase activity in mesangial cell immune injury. Exp. Nephrol. 1:36–40.

    Google Scholar 

  2. Cook, H. T., H. Ebrahim, A. S. Jansen, G. R. Foster, P. Largen, and V. Cattell. 1994. Expression of the gene for inducible nitric oxide synthase in experimental glomerulonephritis in the rat. Clin. Exp. Immunol. 97:315–320.

    Google Scholar 

  3. Narita, I., W. A. Border, M. Ketteler, and N. A. Noble. 1995. Nitric oxide mediates immunologic injury to kidney mesangium in experimental glomerulonephritis. Lab. Invest. 72:17–24.

    Google Scholar 

  4. Lianos, E. A., and J. Liu. 1997. Changes in inducible nitric oxide synthase expression in experimental glomerulonephritis. Proc. Soc. Exp. Biol. Med. 215:405–411.

    Google Scholar 

  5. Furusu, A., M. Miyazaki, K. Abe, S. Tsukasaki, K. Shioshita, O. Sasaki, K. Miyazaki, Y. Ozono, T. Koji, T. Harada, H. Sakai, and S. Kohno. 1998. Expression of endothelial and inducible nitric oxide synthase in human glomerulonephritis. Kidney Int. 53:1760–1768.

    Google Scholar 

  6. Datta, P. K., S. B. Koukouritaki, K. A. Hopp, and E. A. Lianos. 1999. Heme oxygenase-1 induction attenuates inducible nitric oxide synthase expression and proteinuria in glomerulonephritis. J. Am. Soc. Nephrol. 10:2540–2550.

    Google Scholar 

  7. Moncada, S., R. M. J. Palmer, and E. A. Higgs. 1991. Nitric oxide: Physiology, pathophysiology and pharmacology. Pharmacol. Rev. 43:109–142.

    Google Scholar 

  8. Xie, Q., and C. Nathan. 1994. The high-output nitric oxide pathway: Role and regulation. J. Leukoc. Biol. 56:576–582.

    Google Scholar 

  9. Okuda, S., L. R. Languino, E. Ruoslahti, and W. A. Border. 1990. Elevated expression of TGF-b and proteoglycan production in experimental glomerulonephritis. J. Clin. Invest. 86:453–462.

    Google Scholar 

  10. Shankland, S. J., J. Pippin, R. H. Pichler, K. L. Gordon, S. Friedman, L. I. Gold, R. J. Johnson, and W. G. Couser. 1996. Differential expression of transforming growth factor-b isoforms and receptors in experimental membranous nephropathy. Kidney Int. 50:116–124.

    Google Scholar 

  11. Roberts, A. B., B. K. McCune, and M. B. Sporn. 1992. TGF-beta: Regulation of extracellular matrix. Kidney Int. 41:557–559.

    Google Scholar 

  12. Border, W. A., S. Okuda, L. R. Languino, M. B. Sporn, and E. Ruoslahti. 1990. Suppression of experimental glomerulonephritis by antiserum against TGF-b. Nature 346:371–374.

    Google Scholar 

  13. Brinckerhoff, C. E., J. W. Coffey, and A. C. Sullivan. 1983. Inflammation and collagenase production in rats with adjuvant arthritis reduced with 13-cis-retinoic acid. Science 221:756–758.

    Google Scholar 

  14. Orfanos, C. E., and R. Bauer. 1983. Evidence for antiinflammatory activities for oral and synthetic retinoids: Experimental findings and clinical experience. Br. J. Dermatol. S25:55–60.

    Google Scholar 

  15. Mehta, K., T. McQueen, S. Tucker, R. Pandita, and B. B. Aggarwal. 1994. Inhibition by all-trans retinoic acid of tumor necrosis factor and nitric oxide production by peritoneal macrophages.J. Leukoc. Biol. 55:336–342.

    Google Scholar 

  16. Mangelsdorf, D. J., K. Umesono, and R. M. Evans. 1994. The retinoid receptors. In: Sporn MB, Roberts AB, and Goodman DS, eds. The Retinoids: Biology, Chemistry and Medicine, New York: Raven Press; 319–359

    Google Scholar 

  17. Zhang, X., J. Lehmann, B. Hoffmann, M. I. Dawson, J. Cameron, G. Graupner, T. Hermann, P. Tran, and M. Pfhal. 1992. Homodimer formation of retinoid receptor induced by 9-cis-retinoic acid. Nature 358:587–591.

    Google Scholar 

  18. Schule, R., P. Rangarajan, N. Yang, S. Kliewer, L. J. Ransone, J. Bolado, I. M. Verma, and R. M. Evans. 1991. Retinoic acid is a negative regulator of AP-I responsive genes. Proc. Natl. Acad. Sci.USA 88:6092–6096.

    Google Scholar 

  19. Nicholson, R. C., S. Mader, S. Nagpal, M. Lied, C. Rochette-Egly, and P. Chambon. 1990. Negative regulation of the rat stromelysin gene promoter by retinoic acid is mediated by an AP1 binding site. EMBO J. 9:4443–4454.

    Google Scholar 

  20. Ward, A., R. N. Brogden, R. C. Heel, T. M. Speight, and G. S. Avery. 1983. Etretinate: A review of its pharmacological properties and therapeutic efficacy in psoriasis and other skin disorders. Drugs 26:9–43.

    Google Scholar 

  21. Peck, G. L., T. G. Olsen, D. Butkus, M. Pandya, J. Arnaud-Battandier, E. G. Gross, D. B. Windhorst, and J. Cheripko. 1982. Isotretinoin versus placebo in the treatment of cystic acne. A randomized double-blind study. J. Am. Acad. Dermatol. 6:735–745.

    Google Scholar 

  22. Brinckerhoff, C. E. 1990. Retinoids and rheumatoid arthritis: modulation of extracellular matrix by controlling expression of collagenase. Methods Enzymol. 190:175–188.

    Google Scholar 

  23. Hirokawa, K., K. M. O'shaughnessy, P. Ramrakha, and M. R. Wilkins. 1994. Inhibition of nitric oxide synthesis in vascular smooth muscle by retinoids. Br. J. Pharmacol. 113:1448–1454.

    Google Scholar 

  24. Datta, P. K., and E. A. Lianos. 1999. Retinoic acids inhibit inducible nitric oxide synthase expression in mesangial cells. Kidney Int. 54:486–493.

    Google Scholar 

  25. Bokemeyer, D., K. E. Guglielmi, A. McGinty, A. Sorokin, E. A. Lianos, and M. J. Dunn. 1997. Activation of extracellular signalregulated kinase in proliferative glomerulonephritis in rats. J. Clin. Invest. 100:582–588.

    Google Scholar 

  26. Schecklmann, H. O., H. D. Rupprecht, I. Zauner, and R. B. Sterzel. 1997. TGF-b1 induced cell cycle arrest in renal mesangial cells involves inhibition of cyclin E-CDK2 activation and retinoblastoma protein phosphorylation. Kidney Int. 51:1228–1236.

    Google Scholar 

  27. Polyak, K. 1996. Negative regulation of cell growth by TGF beta. Biochim. Biophys. Acta. 1242:185–199.

    Google Scholar 

  28. Pfeilschifter, J., and K. Vosbeck. 1991. Transforming growth factor beta 2 inhibits interleukin I beta and tumor necrosis factor alphainduction of nitric oxide synthase in rat mesangial cells. Biochem. Biophys. Res. Commun. 175:372–379.

    Google Scholar 

  29. Massague, J. 1998. TGF-b signal transduction. Annu. Rev. Biochem. 67:753–759.

    Google Scholar 

  30. Choi, M. E., E. G. Kim, Q. Huang, and B. J. Ballermann. 1993. Rat mesangial cell hypertrophy in response to transforming growth factor-beta 1. Kidney Int. 44:948–958.

    Google Scholar 

  31. Xiong, Y., H. Zhang, and D. Beach. 1992. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71:505–514.

    Google Scholar 

  32. Wan, Y. J.-Y., L. Wang, and T. C. J. Wu. 1992. Detection of retinoic acid receptor mRNA in rat tissues by reverse transcriptasepolymerase chain reaction. J. Mol. Endocrinol. 9:291–294.

    Google Scholar 

  33. Yang, T., D. E. Michele, J. Park, A. N. Smart, Z. Lin, F. C. Brosius, III, J. B. Schnermann, and J. P. Briggs. 1999. Expression of peroxisomal proliferator-activated receptors and retinoid X-receptors in the kidney. Am. J. Physiol. 46:F966–F973.

    Google Scholar 

  34. Tzimas, G., R. Thiel, I. Chahoud, and H. Nau. 1997. The area under the concentration-time curve of all-trans-retinoic acid is the most suitable pharmacokinetic correlate to the embryotoxicity of this retinoid in the rat. Toxicol. Appl. Pharmacol. 143:436–444.

    Google Scholar 

  35. Falk, L. A., F. Benedetti, N. Lohrey, M. C. Birchenall-Roberts, L. W. Ellingsworth, C. R. Faltynek, and F. W. Rusetti. 1991. Induction of TGF-b1 receptor expression and TGF-b1 protein production in retinoic acid treated HL-60 cells: possible TGF-b1 mediated autocrine inhibition. Blood 77:1248–1253.

    Google Scholar 

  36. Roberts, A. B., and M. B. Sporn. 1992. Mechanistic interrelationships between two superfamilies: The steroid/retinoid receptors and transforming factors. Cancer Surv. 14:205–220.

    Google Scholar 

  37. Jakowlew, S. B., J. Cubert, D. Danielpour, M. B. Sporn, and A. B. Roberts. 1992. Differential regulation of the expression of transforming growth factor-beta mRNAs by growth factors and retinoic acid in chicken embryo chondrocytes, myocytes, and fibroblasts. J. Cell. Physiol. 150:377–385.

    Google Scholar 

  38. Okuno, M., H. Moriwaki, S. Imai, Y. Muto, N. Kawada, Y. Suzuki, and S. Kojima. 1997. Retinoids exacerbate rat liver fibrosis by inducing the activation of latent TGF-b in liver stellate cells. Hepatology 26:913–921.

    Google Scholar 

  39. Lianos, E. A., V. Orphanos, V. Cattell, T. Cook, and N. Anagnou. 1994. Glomerular expression and cell origin of transforming growth factor-b1 in anti-glomerular basement membrane disease. Am. J. Med. Sci. 307:1–6.

    Google Scholar 

  40. Vodovotz, Y. 1997. Control of nitric oxide production by transforming growth factor-b1: Mechanistic insights and potential relevance to human disease. Nitric Oxide 1:3–17.

    Google Scholar 

  41. Xie, Q. W., Y. Kashiwabara, and C. Nathan. 1994. Role of transcription factor NF-kappa B/rel in induction of nitric oxide synthase. J. Biol. Chem. 269:4705–4708.

    Google Scholar 

  42. Yoshizawa, M., H. Miyaki, and S. Kojima. 1998. Retinoids potentiate transforming factor-beta activity in bovine endothelial cells through up-regulating the expression of transforming growth factor-beta receptors. J. Cell. Physiol. 176:565–573.

    Google Scholar 

  43. Roulot, D., A.-M. Sevcsik, T. Coste, A. D. Strosberg, and S. Marullo. 1999. Role of transforming growth factor b type II receptor in hepatic fibrosis: studies of human chronic hepatitis C and experimental fibrosis in rats. Hepatology 29:1730–1738.

    Google Scholar 

  44. Lianos, E. A., G. A. Andres, and M. J. Dunn. 1983. Glomerular prostaglandin and thromboxane synthesis in rat nephrotoxic serum nephritis. Effects on renal hemodynamics. J. Clin. Invest. 72:1439–1448.

    Google Scholar 

  45. Zheng, Y., P. M. Kramer, G. Olson, R. A. Lubet, V. Steele, G. J. Kelloff, and M. A. Pereira. 1997. Prevention by retinoids of azoxymethane-induced tumors and aberrant crypt foci and their modulation of cell proliferation in the colon of rats. Carcinogenesis 18:2119–2125.

    Google Scholar 

  46. Ninomiya, Y., R. Adams, G. M. Morriss-Kay, and K. Eto. 1997. Apoptotic cell death in neuronal differentiation of P19 EC cells: cell death follows reentry into S phase. J. Cell. Physiol. 172:25–32.

    Google Scholar 

  47. Wagner, J., C. Dechow, C. Morath, I. Lehrke, K. Amann, R. Waldherr, J. Floege, and E. Ritz. 2000. Retinoic acid reduces glomerular injury in a rat model of glomerular damage. J. Am. Soc. Nephrol. 11:1479–1487.

    Google Scholar 

  48. Lianos, E. A., K. Guglielmi, and M. Sharma. 1998. Regulatory interactions between inducible nitric oxide synthase and eicosanoids in glomerular immune injury. Kidney Int. 53:645–653.

    Google Scholar 

  49. Cattell, V., H. T. Cook, H. Ebrahim, S. N. Waddington, X. Q. Wei, K. J. M. Assmann, and F. Y. Liew. 1998. Anti-GBM glomerulonephritis in mice lacking nitric oxide synthase type 2. Kidney Int. 53:932–936.

    Google Scholar 

  50. Shah, S. V. 1995. The role of reactive oxygen metabolites in glomerular disease. Annu. Rev. Physiol. 57:245–262.

    Google Scholar 

  51. Wink, D. A., J. A. Cook, R. Pucelli, P. S. Liebmann, M. C. Krishnan, and J. B. Mitchell. 1995. Nitric oxide protects against cellular damage by reactive oxygen species. Toxicol. Lett. 82:221–226.

    Google Scholar 

  52. Border, W. A., S. Okuda, L. R. Languino, M. D. Sporn, and E. Ruoslahti. 1990. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor-β1. Nature 346:371–374.

    Google Scholar 

  53. Nakamura, T., D. Miller, E. Ruoslahti, and W. A. Border. 1992. Production of extracellular matrix by gomerular epithelial cells is regulated by transforming growth factor-β1. Kidney Int. 41:1213–1221.

    Google Scholar 

  54. Wicke, C., B. Halliday, D. Allen, N. S. Roche, H. Scheuenstuhl, M. M. Spencer, and A. B. Roberts. 2000. Effects of steroids and retinoids on wound healing. Archives of Surgery 135(11):1265–1270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, P.K., Reddy, R.S. & Lianos, E.A. Effects of All-Trans-Retinoic Acid (atRA) on Inducible Nitric Oxide Synthase (iNOS) Activity and Transforming Growth Factor Beta-1 Production in Experimental Anti-GBM Antibody-Mediated Glomerulonephritis. Inflammation 25, 351–359 (2001). https://doi.org/10.1023/A:1012888029442

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012888029442

Navigation