Skip to main content
Log in

Molecular determinants of human uveal melanoma invasion and metastasis

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The molecular analysis of cancer has benefited tremendously from the sequencing of the human genome integrated with the science of bioinformatics. Microarray analysis technology has the potential to classify tumors based on the differential expression of genes. In the current study, a collaborative, multidisciplinary approach was utilized to study the molecular determinants of human uveal melanoma invasion and metastasis. Uveal melanoma is considered the most common primary intraocular cancer in adults, resulting in the death of approximately 50% of patients affected. Unfortunately, at the time of diagnosis, many patients already harbor microscopic metastases, thus underscoring a critical need to identify prognostic markers indicative of metastatic potential. The investigative strategy consisted of isolating highly invasive vs. poorly invasive uveal melanoma cells from a heterogeneous tumor derived from cells that had metastasized from the eye to the liver. The heterogeneous tissue explant MUM-2 led to the derivation of two clonal cell lines: MUM-2B and MUM-2C. Further morphological and functional analyses revealed that the MUM-2B cells were epithelioid, interconverted (expressing mesenchymal and epithelial phenotypes) highly invasive, and demonstrated vasculogenic mimicry. The MUM-2C cells were spindle-like, expressed only a vimentin mesenchymal phenotype, poorly invasive, and were incapable of vasculogenic mimicry. The molecular analysis of the MUM-2B vs. the MUM-2C clones resulted in the differential expression of 210 known genes. Overall, the molecular signature of the MUM-2B cells resembled that of multiple phenotypes – similar to a pluripotent, embryonic-like genotype. Validation of select genes that were upregulated and down-regulated was conducted by semiquantitative RT-PCR measurement. This study provides a molecular profile that will hopefully lead to the development of new molecular targets for therapeutic intervention and possible diagnostic markers to predict the clinical outcome of patients with uveal melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Kohn E, Liotta L. Molecular insights into cancer invasion; Strategies for prevention and intervention. Cancer Res 1995; 55: 1856-62.

    PubMed  CAS  Google Scholar 

  2. Zimmerman L, McLean I. Do growth and onset of symptoms of uveal melanomas indicate subclinical metastasis? Ophthalmology 1984; 92: 685–91.

    Google Scholar 

  3. Donoso L, Shields J, Augsburger J et al. Metastatic uveal melanoma; Diffuse hepatic metastasis in a patient with concurrent normal serum enzyme levels and liver scan (letter). Arch Ophthalmol 1985; 103: 758.

    PubMed  CAS  Google Scholar 

  4. Folberg R. Tumor progression in ocular melanomas. J Invest Dermatol 1993; 100: 1389–98.

    Article  CAS  Google Scholar 

  5. Mooy C, De Jong P. Prognostic parameters in uveal melanoma: A review. Surv Ophthalmol 1996; 41: 215–28.

    Article  PubMed  CAS  Google Scholar 

  6. Clarijs R, Schalkwijk L, Ruiter D et al. Lack of lymphangiogenesis despite coexpression of VEGF-C and its receptor Flt-4 in uveal melanoma. Invest Ophthalmol Vis Sci 2001; 42(7): 1422–8.

    PubMed  CAS  Google Scholar 

  7. Albert D, Niffenegger A, Wilson J. Treatment of metastatic uveal melanoma: Review and recommendation. Surv Ophthalmol 1992; 36: 429–38.

    Article  PubMed  CAS  Google Scholar 

  8. Bedikian A, Kantarjian H, Young S et al. Prognosis in metastatic choroidal melanoma. South Med J 1981; 74: 574–7.

    PubMed  CAS  Google Scholar 

  9. Bedikian A, Legha S, Mavligit G et al. Treatment of uveal melanoma metastatic to the liver: A review of the M.D. Anderson Cancer Center experience and prognostic factors. Cancer 1995; 76: 1665–70.

    Article  PubMed  CAS  Google Scholar 

  10. Char D. Metastatic chorodial melanoma. Am J Ophthalmol 1978; 86: 76–80.

    PubMed  CAS  Google Scholar 

  11. Einhorn L, Burges M, Gottieb J. Metastatic patterns of choroidal melanoma. Cancer 1974; 34: 1001–4.

    Article  PubMed  CAS  Google Scholar 

  12. Lorigan J, Wallace S, Mavligit G. The prevalence and location of metastases from ocular melanoma: Imaging study in 110 patients. Am J Roentgenol 1991; 157: 1279–81.

    CAS  Google Scholar 

  13. Panigel K, Hedelin G, Speeg-Schatz C et al. Prognostic factors of choroidal melanoma: An anatomo-clinical retrospective and statistical study of 76 enucleated cases. J Fr Ophtalmol 1992; 15: 410–4.

    PubMed  CAS  Google Scholar 

  14. Zakka K, Foos R, Omphroy C et al. Malignant melanoma: Analysis of an autopsy population. Ophthalmology 1980; 87: 549–56.

    PubMed  CAS  Google Scholar 

  15. Callender G. Malignant melanotic tumors of the eye: A study of histologic types in 111 cases. Trans Am Acad Ophthalmol Otolaryngol 1931; 36: 131–42.

    Google Scholar 

  16. Callender G, Wilder H, Ash J. Five hundred malignant melanomas of the choroids and ciliary body followed for five years or longer. Trans Am Acad Ophthalmol Otolaryngol 1942; 46: 223–30.

    Google Scholar 

  17. McLean I, Foster W, Zimmerman L et al. Modifications of Callender's classification of uveal melanoma at the Armed Forces Institute of Pathology. Am J Ophthalmol 1983; 96: 502–9.

    PubMed  CAS  Google Scholar 

  18. Wilder H, Callender G. Malignant melanoma of the choroids: Further studies on prognosis by histologic type and fiber content. Am J Ophthalmol 1939; 22: 851–5.

    Google Scholar 

  19. Seddon J, Polivogianis L, Hsieh C et al. Death from uveal melanoma: Number of epithelioid cells and inverse SD of nucleolar area as prognostic factors. Arch Ophthalmol 1987; 105: 801–6.

    PubMed  CAS  Google Scholar 

  20. Hendrix M, Seftor E, Seftor R et al. Biological determinants of uveal melanoma metastatic phenotype: Role of intermediate filaments as predictive markers. Lab Invest 1998; 78: 153–63.

    PubMed  CAS  Google Scholar 

  21. Seftor E, Seftor R, Hendrix M. Selection of invasive and metastatic subpopulations from a heterogeneous human melanoma cell line. Biotechniques 1990; 9(3): 324–31.

    PubMed  CAS  Google Scholar 

  22. Kan-Mitchell J, Mitchell M, Rao N et al. Characterization of uveal malanoma cell lines that grow as xenografts in rabbits eyes. Invest Ophthalmol Vis Sci 1989; 30: 829–34.

    PubMed  CAS  Google Scholar 

  23. Daniels K, Boldt H, Martin J et al. Expression of Type VI collagen in uveal melanoma: Role in pattern formation and tumor progression. Lab Invest 1996; 75: 55–66.

    PubMed  CAS  Google Scholar 

  24. Folberg R, Rummelt V, Parys-Van Ginderdeuren R et al. The prognostic value of tumor blood vessel morphology in primary uveal melanoma. Ophthalmology 1993; 100: 1389–98.

    PubMed  CAS  Google Scholar 

  25. McLean I, Keefe K, Burnier M. Uveal melanoma: Comparison of the prognostic value of fibrovascular loops, mean of the ten largest nuclcoli, cell type and tumor size. Ophthalmology 1997; 104: 777–80.

    PubMed  CAS  Google Scholar 

  26. Maniotis A, Folberg R, Hess A et al. Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. Am J Pathol 1999; 155: 739–52.

    PubMed  CAS  Google Scholar 

  27. Bittner M, Meltzer P, Chen Y et al. Molecular classification of cutaneous malignant melanoma by gene expression: Shifting from a continuous spectrum to distinct biologic entities. Nature 2000; 406: 536–40.

    Article  PubMed  CAS  Google Scholar 

  28. Khan J, Simon R, Bittner M et al. Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res 1998; 58: 5009–13.

    PubMed  CAS  Google Scholar 

  29. Ross D, Scherf U, Eisen M et al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genet 2000; 24: 227–34.

    Article  PubMed  CAS  Google Scholar 

  30. Luo J, Duggan D, Chen Y et al. Human prostate cancer and benign prostatic hyperplasia: Molecular dissection by gene expression profiling. Cancer Res 2001; 61: 4683–8.

    PubMed  CAS  Google Scholar 

  31. Hendrix M, Seftor E, Seftor R et al. Regulation of uveal melanoma interconverted phenotype by hepatocyte growth factor (HGF/SF). Am J Pathol 1998; 152: 855–63.

    PubMed  CAS  Google Scholar 

  32. McIntosh G, Lodge A, Watson P et al. NCL-CD10-270: A new monoclonal antibody recognizing CD10 in paraffin-embedded tissue. Am J Pathol 1999; 154(1): 77–82.

    PubMed  CAS  Google Scholar 

  33. Ino K, Suzuki T, Uehara C et al. The expression and localization of neutral endopeptidase 24.11/CD10 in human gestational trophoblastic diseases. Lab Invest 2000; 80(11): 1729–38.

    Article  PubMed  CAS  Google Scholar 

  34. Carrel S, Zografos L, Schreyer M et al. Expression of CALLA/CD10 on human melanoma cells. Melanoma Res 1993; 3(5): 319–23.

    PubMed  CAS  Google Scholar 

  35. Yin L, Schwartzberg P, Scharton-Kersten T et al. Immune responses in mice deficient in Ly-GDI, a lymphoid-specific regulator of Rho GTPases. Mol Immunol 1997; 34(6): 481–91.

    Article  PubMed  CAS  Google Scholar 

  36. Guillemot J, Kruskal B, Adra C et al. Targeted disruption of guanosine diphosphate-dissociation inhibitor for RHO-related proteins, GDID4: Normal hematopoictic differentiation but subtle defect in superoxide production by macrophages derived from in vitro embryonal stem cell differentiation. Blood 1996; 88(7): 2722–31.

    PubMed  CAS  Google Scholar 

  37. Duncan M, Frazier K, Abramson S et al. Connective tissue growth factor mediates transforming growth factor β-induced collagen synthesis: Down-regulation by cAMP. FASEB J 1999; 13: 1774–86.

    PubMed  CAS  Google Scholar 

  38. Frazier K, Williams S, Kothapalli D et al. Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol 1996; 107: 404-11.

    Article  PubMed  CAS  Google Scholar 

  39. Grotendorst G, Okochi H and Hayashi N. A novel transforming growth factor β response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 1996; 7: 469–80.

    PubMed  CAS  Google Scholar 

  40. Tseng H. Basonuclin, a zine finger protein associated with epithelial expansion and proliferation. Frontiers Biosci 1998; 3: D985–8.

    CAS  Google Scholar 

  41. Broze G. Tissue factor pathway inhibitor and the revised theory of coagulation. Ann Rev Med 1995; 46: 103–12.

    Article  PubMed  CAS  Google Scholar 

  42. Neaud V, Hisaka T, Monvoisin A et al. Paradoxical pro-invasive effect of the serine proteinase inhibitor tissue factor pathway inhibitor-2 on human hepatocellular carcinoma cells. J Biol Chem 2000; 275(45): 35565–9.

    Article  PubMed  CAS  Google Scholar 

  43. Fischer E, Riewald M, Huang H et al. Tumor cell adhesion and migration supported by interaction of a receptor-protease complex with its inhibitor. J Clin Invest 1999; 104(9): 1213–21.

    PubMed  CAS  Google Scholar 

  44. Murphy M, Reid K, Ford M et al. FGF2 regulates prol feration of neural crest cells with subsequent neuronal differentiation regulated by LIF or related factors. Development 1994; 120: 3519–28.

    PubMed  CAS  Google Scholar 

  45. Barasch J, Yang J, Ware C et al. Mesenchymal to epithelial conversion in rat metanephros in induced by LIF. Cell 1999; 99: 377–86.

    Article  PubMed  CAS  Google Scholar 

  46. Hendrix M, Seftor E, Chu Y-W et al. Coexpression of vimentin and keratin by human melanoma tumor cells: Correlation with invasive and metastatic potential. JNCI 1992; 84: 165–74.

    PubMed  CAS  Google Scholar 

  47. di Magliano M, Di Lauro R, Zannini M. Pax8 has a key role in thyroid cell differentiation. PNAS 2000; 97(24): 13144–9.

    Article  CAS  Google Scholar 

  48. Marquardt T, Ashery-Padan R, Andrejewski N et al. Pax6 is required for the multipotent state of retinal progenitor cells. Cell 2001; 105: 43–55.

    Article  PubMed  CAS  Google Scholar 

  49. Egashira M, Kitamura D, Watanabe T et al. The human HCLS1 gene maps to chromosome 3q13 by fluorescence in situ hybridization. Cytogenet Cell Genet 1996; 72: 175–6.

    Article  PubMed  CAS  Google Scholar 

  50. Morris P, Shaman J, Attaya M et al. An essential role for HLA-DM in antigen presentation by class II major histocompatibility molecules. Nature 1994; 368: 551–4.

    Article  PubMed  CAS  Google Scholar 

  51. Fling S, Arp B and Pious D. HLA-DMA and-DMB genes are both required for MHC class II/peptide complex formation in antigen-presenting cells. Nature 1994; 368: 554–8.

    Article  PubMed  CAS  Google Scholar 

  52. Weber D, Evavold B and Jensen P. Enhanced dissociation of HLA-DR-bound peptides in the presence of HLA-DM. Science 1996; 274: 618–20.

    Article  PubMed  CAS  Google Scholar 

  53. Walter W, Lingnau K, Schmitt E et al. MHC class II antigen presentation pathway in murine tumours: tumour evasion from immunosurveillance? Br J Cancer 2000; 83(9): 1192–201.

    Article  PubMed  CAS  Google Scholar 

  54. Hendrix M, Seftor E, Eckes M et al. Effect of interferon-gamma on the expression of HLA-DR by human melanoma cells of varying metastatic potential. Pig Cell Res 1990; 3: 162–7.

    CAS  Google Scholar 

  55. Hurks H, Metzelaar-Blok J, Mulder A et al. High frequency of allele-specific down-regulation of HLA class I expression in uveal melanoma cell lines. Int J Cancer 2000; 85(5): 697–702.

    Article  PubMed  CAS  Google Scholar 

  56. Olinsky S, Loop B, DeKosky A et al. Chromosomal mapping of the human M6 genes. Genomics 1996; 33(3): 532–6.

    Article  PubMed  CAS  Google Scholar 

  57. White V, Chambers J, Courtright P et al. Correlation of cytogenetic abnormalities with the outcome of patients with uveal melanoma. Cancer 1998; 83: 354–9.

    Article  PubMed  CAS  Google Scholar 

  58. Sisley K, Parsons M, Garnham J et al. Association of specific chromosome alterations with tumor phenotype in posterior uveal melanoma. Br J Cancer 2000; 82: 330–8.

    Article  PubMed  CAS  Google Scholar 

  59. Weinstein B. What guides early embryonic blood vessel formation? Dev Dynam 1999; 215: 2–11.

    Article  CAS  Google Scholar 

  60. Iljin K, Dube A, Kontusaari S et al. Role of Ets factors in the activity and endothelial cell specificity of the mouse Tie gene promoter. FASEB J 1999; 13: 377–86.

    PubMed  CAS  Google Scholar 

  61. Kraemer M, Tournaire R, Dejong V et al. Rat embryo fibroblasts transformed by c-Jun display highly metastatic and angiogenic activities in vivo and deregulate gene expression of both angiogenic and antiangiogenic factors. Cell Growth Differ 1999; 10: 193–200.

    PubMed  CAS  Google Scholar 

  62. Loughna S, Sata T. A combinatorial role of angiopoietin-1 and orphan receptor TIE1 pathways in establishing vascular polarity during angiogenesis. Mol Cell 2001; 7: 233–9.

    Article  PubMed  CAS  Google Scholar 

  63. Partanen T, Arola J, Saaristo A et al. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J 2000; 14: 2087–96.

    Article  PubMed  CAS  Google Scholar 

  64. Woolf A, Loughna S. Origin of glomerular capillaries: Is the verdict in? Exp Nephrol 1998; 6: 17–21.

    Article  PubMed  CAS  Google Scholar 

  65. Yancopoulos G, Davis S, Gale N et al. Vascular-specific growth factors and blood vessel formation. Nature 2000; 407: 242–8.

    Article  PubMed  CAS  Google Scholar 

  66. Carmeliet P, Jain R. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–57.

    Article  PubMed  CAS  Google Scholar 

  67. Folberg R, Hendrix M, Maniotis A. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 2000; 156(2): 361–81.

    PubMed  CAS  Google Scholar 

  68. Warso M, Moniotis A, Chen X et al. Prognostic significance of periodic acid-schiff-positive patterns in primary cutancous melanoma. Clin Cancer Res 2001; 7: 473–7.

    PubMed  CAS  Google Scholar 

  69. Hess A, Seftor E, Gardner L et al. Molecular regulation of tumor cell vasculogenic mimicry by tryrosine phosphorylation: Role of epithelial cell kinase. Cancer Res 2001; 61: 3250–5.

    PubMed  CAS  Google Scholar 

  70. Hendrix M, Seftor E, Meltzer P et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry. PNAS 2001; 98: 8018–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seftor, E.A., Meltzer, P.S., Kirschmann, D.A. et al. Molecular determinants of human uveal melanoma invasion and metastasis. Clin Exp Metastasis 19, 233–246 (2002). https://doi.org/10.1023/A:1015591624171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015591624171

Navigation