Skip to main content
Log in

Control of Normal Mammary Epithelial Phenotype by Integrins

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Mammary epithelial cells contact a specializedextracellular matrix in vivo known as the basementmembrane. Interactions with extracellular matrix aremediated through integrins. These cell surface receptors are involved with the formation of adhesioncomplexes, which link the extracellular matrix with theactin-based cytoskeleton, and are also associated withcomponents of growth factor signaling pathways. Differentiation of breast epithelia intolactational cells requires appropriate hormones andintegrin-mediated interactions with basement membrane.Integrins may regulate the ability of lactogenichormones to trigger their intracellular signalingpathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.M. Zutter, H. Sun, and S. A. Santoro (1998). Altered integrin expression and the malignant phenotype: The contribution of Multiple integrated integrin receptors. J. Mam. Gland Biol. Neoplasia. 3: xx-xx.

    Google Scholar 

  2. F. Berdichevsky, D. Alford, B. Dsouza, and J. Taylorpapadimitriou (1994). Branching morphogenesis of human mammary epithelial-cells in collagen gels. J. Cell Sci. 107: 3557-3568.

    Google Scholar 

  3. T. Klinowska, G. Broomhead, and C. Streuli (1996). Requirement for beta 1 integrins in the development of mouse mammary gland. Mol. Biol. Cell. 7: 364-364.

    Google Scholar 

  4. C. H. Streuli, N. Bailey, and M. J. Bissell (1991). Control of mammary epithelial differentiation — basement-membrane induces tissue-specific gene-expression in the absence of cell-Interaction and morphological polarity. J. Cell Biol. 115: 1383-1395.

    Google Scholar 

  5. N. Boudreau, C. J. Sympson, Z. Werb, and M. J. Bissell (1995). Suppression of ice and apoptosis in mammary epithelial-cells by extracellular-matrix. Science 267: 891-893.

    Google Scholar 

  6. S. Pullan, J. Wilson, A. Metcalfe, G. M. Edwards, N. Goberdhan, J. Tilly, J. A. Hickman, C. Dive, and C. H. Streuli (1996). Requirement of basement-membrane for the suppression of programmed cell-death in mammary epithelium. J. Cell Sci. 109: 631-642.

    Google Scholar 

  7. M. A. Schwartz, M. D. Schaller, and M. H. Ginsberg (1995). Integrins — emerging paradigms of signal-transduction. Ann. Rev. Cell Devel. Biol. 11: 549-599.

    Google Scholar 

  8. R. K. Assoian and X. Y. Zhu (1997). Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression. Curr. Opin. Cell Biol. 9: 93-98.

    Google Scholar 

  9. S. M. Frisch and E. Ruoslahti (1997). Integrins and anoikis. Curr. Opin. Cell Biol. 9: 701-706.

    Google Scholar 

  10. G. G. Giancotti (1997). Integrin signaling: specificity and control of cell survival and cell cycle progression. Curr. Opin. Cell Biol. 9: 691-700.

    Google Scholar 

  11. K. M. Yamada and B. Geiger (1997). Molecular interactions in cell adhesion complexes. Curr. Opin. Cell Biol. 9: 76-85.

    Google Scholar 

  12. C. D. Nobes and A. Hall (1995). Rho, Rac, and Cdc42 Gtpases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81: 53-62.

    Google Scholar 

  13. N. A. Hotchin and A. Hall (1995). The assembly of integrin adhesion complexes requires both extracellular-matrix and intracellular Rho/Rac Gtpases. J. Cell Biol. 131: 1857-1865.

    Google Scholar 

  14. M. W. Renshaw, D. Toksoz, and M. A. Schwartz (1996). Involvement of the small Gtpase-Rho in integrin-mediated activation of mitogen-activated protein-kinase. J. Biol. Chem. 271: 21691-21694.

    Google Scholar 

  15. K. Simons and E. Ikonen (1997). Functional rafts in cell membranes. Nature 387: 569-572.

    Google Scholar 

  16. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber (1997). Geometric control of cell life and death. Science 276: 1425-1428.

    Google Scholar 

  17. K. Vuori and E. Ruoslahti (1994). Association of insulin-receptor substrate-1 with integrins. Science 266: 1576-1578.

    Google Scholar 

  18. F. Berditchevski, K. F. Tolias, K. Wong, C. L. Carpenter, and M. E. Hemler (1997). A novel link between integrins, trans-membrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J. Biol. Chem. 272: 2595-2598.

    Google Scholar 

  19. R. O. Hynes (1992). Integrins — versatility, modulation, and signaling in cell-adhesion. Cell 69: 11-25.

    Google Scholar 

  20. S. K. Hanks and T. R. Polte (1997). Signaling through focal adhesion kinase. Bioessays 19: 137-45.

    Google Scholar 

  21. D. D. Schlaepfer and T. Hunter (1996). Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol. Cell Biol. 16: 5623-5633.

    Google Scholar 

  22. A. P. Gilmore and L. H. Romer (1996). Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol. Biol. Cell 7: 1209-24.

    Google Scholar 

  23. D. Ilic, C. H. Damsky, and T. Yamamoto (1997). Focal adhesion kinase: At the crossroads of signal transduction. J. Cell Sci. 110: 401-407.

    Google Scholar 

  24. X. Y. Zhu, M. Ohtsubo, R. M. Bohmer, J. M. Roberts, and R. K. Assoian (1996). Adhesion-dependent cell-cycle progression linked to the expression of cyclin D1, activation of cyclin E-Cdk2, and phosphorylation of the retinoblastoma protein. J. Cell Biol. 133: 391-403.

    Google Scholar 

  25. R. M. Bohmer, E. Scharf, and R. K. Assoian (1996). Cytoskeletal integrity is required throughout the mitogen stimulation phase of the cell-cycle and mediates the anchorage-dependent expression of cyclin D1. Mol. Biol. Cell 7: 101-111.

    Google Scholar 

  26. J. Y.-J. Shyy and S. Chien (1997). Role of integrins in cellular responses to mechanical stress and adhesion. Curr. Opin. Cell Biol. 9: 707-713.

    Google Scholar 

  27. J. T. Emerman and D. R. Pitelka (1977). Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In vitro Devel. Biol. 13: 316-328.

    Google Scholar 

  28. J. T. Emerman, J. Enami, D. R. Pitelka, and S. Nandi (1977). Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes. Proc. Natl. Acad. Sci. U.S.A. 74: 4466-4470.

    Google Scholar 

  29. J. T. Emerman, J. C. Bartley, and M. J. Bissell (1981). Glucose metabolite patterns as markers of functional-differentiation in freshly isolated and cultured mouse mammary epithelial-cells. Exp. Cell Res. 134: 241-250.

    Google Scholar 

  30. E. Y. H. Lee, G. Parry, and M. J. Bissell (1984). Modulation of secreted proteins of mouse mammary epithelial-cells by the collagenous substrata. J. Cell Biol. 98: 146-155.

    Google Scholar 

  31. E. Lee, W. H. Lee, C. S. Kaetzel, G. Parry, and M. J. Bissell (1985). Interaction of mouse mammary epithelial-cells with collagen substrata — regulation of casein gene-expression and secretion. Proc. Natl. Acad. Sci. U.S.A. 82: 1419-1423.

    Google Scholar 

  32. R. H. W. Wetzels, R. Holland, U. Vanhaelst, E. B. Lane, I. M. Leigh, and F. C. S. Ramaekers (1989). Detection of basement-membrane components and basal-cell keratin-14 in noninvasive and invasive carcinomas of the breast. Am. J. Pathol. 134: 571-579.

    Google Scholar 

  33. S. Stahl, S. Weitzman, and J. C. R. Jones (1997). The role of laminin-5 and its receptors in mammary epithelial cell branching morphogenesis. J. Cell Sci. 110: 55-63.

    Google Scholar 

  34. R. E. Hewitt, D. G. Powe, K. Morrell, E. Bailey, I. H. Leach, I. O. Ellis, and D. R. Turner (1997). Laminin and collagen IV subunit distribution in normal and neoplastic tissues of colorectum and breast. Brit. J. Cancer 75: 221-229.

    Google Scholar 

  35. C. M. Alexander, E. W. Howard, M. J. Bissell, and Z. Werb (1996). Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transgene. J. Cell Biol. 135: 1669-1677.

    Google Scholar 

  36. A. D. Murdoch, B. A. Liu, R. Schwarting, R. S. Tuan, and R. V. Iozzo (1994). Widespread expression of perlecan proteoglycan in basement-membranes and extracellular matrices of human tissues as detected by a novel monoclonal-anti body against domain-III and by insitu hybridization. J. Histochem. Cytochem. 42: 239-249.

    Google Scholar 

  37. C. H. Streuli (1995). Basement membrane in the control of mammary gland function. In C. J. Wilde M. Peaker, and C. H. Knight (eds.), Intercellular Signalling in the Mammary Gland, Plenum Press, New York, pp. 141-151.

    Google Scholar 

  38. C. H. Streuli and M. J. Bissell (1990). Expression of extracellular-matrix components is regulated by substratum. J. Cell Biol. 110: 1405-1415.

    Google Scholar 

  39. M. L. Li, J. Aggeler, D. A. Farson, C. Hatier, J. Hassell, and M. J. Bissell (1987). Influence of a reconstituted basement-membrane and its components on casein gene-expression and secretion in mouse mammary epithelial-cell s. Proc. Natl. Acad. Sci. U.S.A. 84: 136-140.

    Google Scholar 

  40. J. Aggeler, J. Ward, L. M. Blackie, M. H. Barcellos-Hoff, C. H. Streuli, and M. J. Bissell (1991). Cytodifferentiation of mouse mammary epithelial-cells cultured on a reconstituted basement-membrane reveals striking similarities to development In vivo. J. Cell Sci. 99: 407.

    Google Scholar 

  41. M. H. Barcellos-Hoff, J. Aggeler, T. G. Ram, and M. J. Bissell (1989). Functional-differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement-membrane. Development 105: 223.

    Google Scholar 

  42. L. H. Chen and M. J. Bissell (1987). Transferrin messenger-Rna level in the mouse mammary-glan d is regulated by pregnancy and extracellular-matrix. J. Biol. Chem. 262: 17247-17250.

    Google Scholar 

  43. L. H. Chen and M. J. Bissell (1989). A novel regulatory mechanism for whey acidic protein gene-expression. Cell Reg. 1: 45-54.

    Google Scholar 

  44. C. Q. Lin, P. J. Dempsey, R. J. Coffey, and M. J. Bissell (1995). Extracellular-matrix regulates whey acidic protein gene-expression by suppression of Tgf-alpha in mouse mammary epithelial-cells—Studies in culture and in transgenic mice. J. Cell Biol. 129: 1115-1126.

    Google Scholar 

  45. H. A. Hahm, M. M. Ip, K. Darcy, J. D. Black, W. K. Shea, S. Forczek, M. Yoshimura, and T. Oka (1990). Primary culture of normal rat mammary epithelial-cells within a basement-membrane matrix 2. Functional-dif ferentiation under serumfree conditions. In Vitro Cell Devel. Biol. 26: 803-814.

    Google Scholar 

  46. C. H. Streuli, C. Schmidhauser, N. Bailey, P. Yurchenco, A. P. N. Skubitz, C. Roskelley, and M. J. Bissell (1995). Laminin mediates tissue-specific gene-expression in mammary epithelia. J. Cell Biol. 129: 591-603.

    Google Scholar 

  47. G. M. Edwards and C. H. Streuli (1998). Production of Rat monoclonal Antibodies Specific for Mouse Integrins Humana Press, Inc., Totowa, New Jersey (in press).

    Google Scholar 

  48. M. Delcommenne and C. H. Streuli (1995). Control of integrin expression by extracellular-matrix. J. Biol. Chem. 270: 26794-26801.

    Google Scholar 

  49. B. M. Chan and M. E. Hemler (1993). Multiple functional forms of the integrin vla-2 can be derived from a single alpha(2) cdna clone—interconversion of forms induced by an antibeta(1) antibody. J. Cell Biol. 120: 537-543.

    Google Scholar 

  50. P. J. Keely, J. E. Wu, and S. A. Santoro (1995). The spatial and temporal expression of the alpha-2-Beta-1 integrin and its ligands, collagen-I, collagen-IV, and laminin, suggest important roles in mouse mammary morphogenesis. Differentiation 59: 1-13.

    Google Scholar 

  51. J. L. Jones, D. R. Critchley, and R. A. Walker (1992). Alteration of stromal protein and integrin expression in breast—a marker of premalignant change. J. Pathol. 167: 399-406.

    Google Scholar 

  52. A. J. D'Ardenne, P. I. Richman, M. A. Horton, A. E. McAulay, and S. Jordan (1991). Coordinate expression of the alpha-6 integrin laminin receptor subunit and laminin in breast-cancer. J. Pathol. 165: 213-220.

    Google Scholar 

  53. K. G. Danielson, C. J. Oborn, E. M. Durban, J. S. Butel, and D. Medina (1984). Epithelial mouse mammary cell-line exhibiting normal morphogenesis in vivo and functional-differentiation in vitro. Proc. Natl. Acad. Sci. U.S.A. 81: 3756-3760.

    Google Scholar 

  54. C. Schmidhauser, M. J. Bissell, C. A. Myers, and G. F. Casperson (1990). Extracellular-matrix and hormones transcriptionally regulate bovine beta-casein 58 sequences in stably transfected mouse mammary cells. Proc. Natl. Acad. Sci. U.S.A. 87: 9118-9122.

    Google Scholar 

  55. P. Y. Desprez, C. Roskelley, J. Campisi, and M. J. Bissell (1993). Isolation of functional cell lines from a mouse mammary epithelial cell strain: the importance of basement membrane and cell-cell interaction. Mol. Cell Differ. 1: 99-110.

    Google Scholar 

  56. R. K. Ball, R. R. Friis, C. A. Schoenenberger, W. Doppler, and B. Groner (1988). Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J. 7: 2089-2095.

    Google Scholar 

  57. R. Chammas, D. Taverna, N. Cella, C. Santos, and N. E. Hynes (1994). Laminin and tenascin assembly and expression regulate Hc11 mouse mammary cell-differentiation. J. Cell Sci. 107: 1031-1040.

    Google Scholar 

  58. C. Schmidhauser, G. F. Casperson, C. A. Myers, K. T. Sanzo, S. Bolten, and M. J. Bissell (1992). A novel transcriptional enhancer is involved in the prolactin and extracellular matrix-dependent regulation of beta-casein gene-expression. Mol. Biol. Cell 3: 699-709.

    Google Scholar 

  59. C. H. Streuli, G. M. Edwards, M. Delcommenne, C. B. A. Whitelaw, T. G. Burdon, C. Schindler, and C. J. Watson (1995). Stat5 as a target for regulation by extracellular-matrix. J. Biol. Chem. 270: 21639-21644.

    Google Scholar 

  60. H. S. Goodman and J. M. Rosen (1990). Transcriptional analysis of the mouse beta-casein gene. Mol. Endocrinol. 4: 1661-1670.

    Google Scholar 

  61. F. Gouilleux, H. Wakao, M. Mundt, and B. Groner (1994). Prolactin induces phosphorylation of Tyr694 of stat5 (Mgf), a prerequisite for DNA-binding and induction of transcription. EMBO J. 13: 4361-4369.

    Google Scholar 

  62. N. E. Hynes, N. Cella, and M. Wartmann (1997). Prolactin mediated intracellular signaling in mammary epithelial cells. J. Mam. Gland Biol. Neoplasia. 2: 19-27.

    Google Scholar 

  63. T. G. Burdon, K. A. Maitland, A. J. Clark, R. Wallace, and C. J. Watson (1994). Regulation of the sheep beta-lactoglobul in gene by lactogenic hormones is mediated by a transcription factor that binds an interferon-gamma activation site-related element. Mol. Endocrinol. 8: 1528-1536.

    Google Scholar 

  64. S. Li and J. M. Rosen (1995). Nuclear factor-I and mammary-gland factor (stat5) play a critical role in regulating rat whey acidic protein gene-expression in transgenic mice. Mol. Cell Biol. 15: 2063-2070.

    Google Scholar 

  65. W. Doppler, T. Welte, and S. Philipp (1995). CCAAT/enhancer-binding protein isoform-beta and isoform-delta are expressed in mammary epithelial-cells and bind to multiple sites in the beta-casein gene promoter. J. Biol. Chem. 270: 17962-17969.

    Google Scholar 

  66. S. Li and J. M. Rosen (1994). Glucocorticoid regulation of rat whey acidic protein gene-expression involves hormone-induced alterations of chromatin structure in the distal promoter Region. Mol. Endocrinol. 8: 1328-1335.

    Google Scholar 

  67. T. Welte, K. Garimorth, S. Philipp, P. Jennewein, C. Huck, A. C. B. Cato, and W. Doppler (1994). Involvement of Ets-related proteins in hormone-indepen dent mammary cell-specific gene-expression. Eur. J. Biochem. 223: 997-1006.

    Google Scholar 

  68. G.M. Edwards and C. H. Streuli (1996). Transcriptional regulation of milk protein gene expression. Mam. Gland Biol. Lactation 14: 2-6.

    Google Scholar 

  69. F. Gouilleux, C. Pallard, I. Dusanterfourt, H. Wakao, L. A. Haldosen, G. Norstedt, D. Levy, and B. Groner (1995). Prolactin, growth-hormone, erythropoietin and granulocyte-macrophage colony-stimulat ing factor induce Mgf-Stat5 DNA-binding activity. EMBO J. 14: 2005-2013.

    Google Scholar 

  70. E. Stocklin, M. Wissler, F. Gouilleux, and B. Groner (1996). Functional interactions between Stat5 and the glucocorticoid receptor. Nature 383: 726-728.

    Google Scholar 

  71. P. A. Ram and D. J. Waxman (1997). Interaction of growth hormone-activat ed STATs with SH2-containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase. J. Biol. Chem. 272: 17694-17702.

    Google Scholar 

  72. G. M. Edwards, F. H. Wilford, X. Liu, L. Hennighausen, J. Djiane, and C. H. Streuli (1998). Regulation of mammary differentiation by extracellular matrix involves protein tyrosine phosphatases. J. Biol. Chem. (in press).

  73. M. David, E. F. Petricoin, K. Igarashi, G. M. Feldman, D. S. Finbloom, and A. C. Larner (1994). Prolactin activates the interferon-regulated P91 transcription factor and the Jak2 kinase by tyrosine phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 91: 7174-7178.

    Google Scholar 

  74. P. A. Maher (1993). Activation of phosphotyrosine phosphatase activity by reduction of cell-substrate adhesion. Proc. Natl. Acad. Sci. U.S.A. 90: 11177-11181.

    Google Scholar 

  75. M. Chiquet, M. Matthisson, M. Koch, M. Tannheimer, and R. Chiquet Ehrismann (1996). Regulation of extracellular matrix synthesis by mechanical stress. Biochem. Cell Biol. 74: 737-744.

    Google Scholar 

  76. D. E. Ingber (1997). Tensegrity: the architectural basis of cellular mechanotransducti on. Ann. Rev. Physiol. 59: 575-599.

    Google Scholar 

  77. C. D. Roskelley, P. Y. Desprez, and M. J. Bissell (1994). Extra-cellular matrix-depende nt tissue-specific gene-expression in mammary epithelial-cells requires both physical and biochemical signal-transduction. Proc. Natl. Acad. Sci. U.S.A. 91: 12378-12382.

    Google Scholar 

  78. C. Roskelley, J. Pan, P. Yaswen, and M. J. Bissell (1996). Extracellular matrix-mediated signaling in mammary epithelial cells is hierarchial. Mol. Biol. Cell 7: 1393-1393.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streuli, C.H., Edwards, G.M. Control of Normal Mammary Epithelial Phenotype by Integrins. J Mammary Gland Biol Neoplasia 3, 151–163 (1998). https://doi.org/10.1023/A:1018742822565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018742822565

Navigation