Skip to main content
Log in

Brain Penetration and In Vivo Recovery of NMDA Receptor Antagonists Amantadine and Memantine: A Quantitative Microdialysis Study

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To determine free brain concentrations of the clinically used uncompetitive NMDA antagonists memantine and amantadine using microdialysis corrected for in vivo recovery in relations to serum, CSF and brain tissue levels and their in vitro potency at NMDA receptors.

Methods. Microdialysis corrected for in vivo recovery was used to determine brain ECF concentrations after steady-state administration of either memantine or amantadine. Additionally CSF, serum, and brain tissue were analyzed.

Results. Following 7 days of infusion of memantine or amantadine (20 and 100 mg/kg/day respectively) whole brain concentrations were 44-and 16-fold higher than free concentrations in serum respectively. The free brain ECF concentration of memantine (0.83 ± 0.05 μM) was comparable to free serum and CSF concentrations. In case of amantadine, it was lower. A higher in vivo than in vitro recovery was found for memantine.

Conclusions. At clinically relevant doses memantine reaches a brain ECF concentration in range of its affinity for the NMDA receptor and close to its free serum concentration. This is not the case for amantadine and different mechanisms of action may be operational.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. B. Justice Jr. Quantitative microdialysis of neurotransmitters, J. Neurosci. Methods 48:263-276 (1993).

    PubMed  Google Scholar 

  2. W. F. Elmquist and R. J. Sawchuk. Application of microdialysis in pharmacokinetic studies, Pharm. Res. 14:267-288 (1997).

    PubMed  Google Scholar 

  3. M. Hammarlund-Udenaes, L. K. Paalzow, and E. C. M. de Lange. Drug equilibrium across the blood-brain barrier-Pharmacokinetic considerations based on the microdialysis method, Pharm. Res. 14:128-134 (1997).

    PubMed  Google Scholar 

  4. Y. Wang and D. F. Welty. The simultaneous estimation of the influx and efflux blood-brain permeabilities of gabapentin using a microdialysis-pharmacokinetic approach., Pharma. Res. 13:398-403 (1996).

    Google Scholar 

  5. U. E. Honegger, G. Quack, and U. N. Wiesmann. Evidence for lysosomotropism of memantine in cultured human cells—cellularkinetics and effects of memantine on phospholipid content and composition, membrane fluidity and beta-adrenergic transmission, Pharmacol. Toxicol. 73:202-208 (1993).

    PubMed  Google Scholar 

  6. Z. Yang, R. C. Brundage, and R. H. Barbhaiya. Microdialysis studies of the distribution of stavudine into the central nervous system in the freely-moving rat, Pharm. Res. 14:865-872 (1997).

    PubMed  Google Scholar 

  7. H. Benveniste and P. C. Huttemeier. Microdialysis-theory and application, Prog. Neurobiol. 35:195-215 (1990).

    PubMed  Google Scholar 

  8. N. Lindefors, G. Amberg, and U. Ungerstedt. Intracerebral microdialysis: I. Experimental studies of diffusion kinetics, J. Pharmacol. Meth. 22:141-156 (1989).

    Google Scholar 

  9. H. Benveniste and A. J. Hansen. Practical aspects of using microdialysis for determination of brain interstitial concentrations. In T. E. Robinson and J. B. Justice JR. (eds), Microdialysis in the Neuroscience, Elsevier, Amsterdam, 1991, pp. 81-100.

    Google Scholar 

  10. P. Lönnroth, P. A. Jansson, and U. Smith. A microdialysis method allowing characterization of intercellular water space in humans, Am. J. Physiol. 253:E228-E231 (1987).

    PubMed  Google Scholar 

  11. I. Jacobson, M. Sandberg, and A. Hamberger. Mass transfer in brain dialysis devices-A new method for the estimation of extra-cellular amino acids concentration, J. Neurosci. Methods 15:263-268 (1985).

    PubMed  Google Scholar 

  12. L. Stahle. The use of microdialysis in pharmacokinetics and pharmacodynamics. In T. E. Robinson and J. B. Justice JR. (eds), Microdialysis in neurosciences, Techniques in the behavioral and neural sciences, Vol. 7, Elsevier, New York, 1991, pp. 155-188.

    Google Scholar 

  13. J. Kornhuber and G. Quack. Cerebrospinal fluid and serum concentrations of the N-methyl-D-aspartate (NMDA) receptor antagonist memantine in man, Neurosci. Lett. 195:137-139 (1995).

    PubMed  Google Scholar 

  14. W. Danysz, C. G. Parsons, J. Kornhuber, W. J. Schmidt, and G. Quack. Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents — Preclinical studies, Neurosci. Biobehav. Rev. 21:455-468 (1997).

    PubMed  Google Scholar 

  15. M. Misztal, T. Frankiewicz, C. G. Parsons, and W. Danysz. Learning deficits induced by chronic intraventricular infusion of quinolinic acid—protection by MK-801 and memantine, Eur. J. Pharmacol. 296:1-8 (1996).

    PubMed  Google Scholar 

  16. A. Vezzani, R. Serafini, M. A. Stasi, S. Caccia, I. Conti, R. V. Tridico, and R. Samanin. Kinetics of MK-801 and its effect on quinolinic acid-induced seizures and neurotoxicity in rats, J. Pharmacol. Exp. Ther. 249:278-283 (1989).

    PubMed  Google Scholar 

  17. P. H. Schwartz and C. G. Wasterlain. Determination of serum and brain concentrations of neuroprotective and non-neuroprotective doses of MK-801, J. Neurol. Sci. 115:26-31 (1993).

    PubMed  Google Scholar 

  18. G. K. Steinberg, D. Kunis, J. Saleh, and R. Delapaz. Protection after transient focal cerebral ischemia by the N-methyl-D-aspartate antagonist dextrorphan is dependent upon plasma and brain levels, J. Cereb. Blood Flow Metab. 11:1015-1024 (1991).

    PubMed  Google Scholar 

  19. P. Hartvig, J. Valtysson, K. J. Lindner, J. Kristensen, R. Karlsten, L. L. Gustafsson, J. Persson, J. O. Svensson, I. Oye, G. Antoni, G. Westerberg, and B. Langstrom. Central nervous system effects of subdissociative doses of (s)-ketamine are related to plasma and brain concentrations measured with positron emission tomography in healthy volunteers, Clin. Pharmacol. Ther. 58:165-173 (1995).

    PubMed  Google Scholar 

  20. P. M. Bungay, P. F. Morrison, and R. L. Dedrick. Steady-state theory for quantitative microdialysis of solutes and water in vivo and in vitro, Life Sci. 46:105-119 (1990).

    PubMed  Google Scholar 

  21. J. Kornhuber, J. Bormann, M. Hubers, K. Rusche, and P. Riederer. Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel-a human postmortem brain study, Eur. J. Pharmacol. 206:297-300(1991).

    PubMed  Google Scholar 

  22. C. G. Parsons, R. Gruner, J. Rozental, J. Millar, and D. Lodge. Patch clamp studies on the kinetics and selectivity of N-methyl-D-aspartate receptor antagonism by memantine (1-amino-3,5-dimethyladamantan), Neuropharmacology 32:1337-1350 (1993).

    Article  PubMed  Google Scholar 

  23. G. L. Wenk, W. Danysz, and D. D. Roice. The effects of mitochondrial failure upon cholinergic toxicity in the nucleus basalis, Neuroreport 7:1453-1456 (1996).

    PubMed  Google Scholar 

  24. L. Stahle, S. Segersvard, and U. Ungerstedt. A comparison between three methods for estimation of extracellular concentrations of exogenous and endogenous compounds by microdialysis. J. Pharmacol. Methods 25:41-52 (1991).

    PubMed  Google Scholar 

  25. P. O. Ekstrom, A. Andersen, D. J. Warren, K. E. Giercksky, and L. Slordal. Determination of extracellular methotrexate tissue levels by microdialysis in a rat model Cancer Chemother. Pharmacol. 37:394-400 (1996).

    PubMed  Google Scholar 

  26. S. Menacherry, W. Hubert, and J. B. Justice. In vivo calibration of microdialysis probes for exogenous compounds, Anal. Chem. 64:577-583 (1992).

    PubMed  Google Scholar 

  27. J. G. Henkel, J. T. Hane, and G. Gianutsos. Structure antiparkinson activity relationships in the aminoadamantanes. Influence of bridgehead substitution, J. Med. Chem. 25:51-56 (1982).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Danysz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesselink, M.B., De Boer, B.G., Breimer, D.D. et al. Brain Penetration and In Vivo Recovery of NMDA Receptor Antagonists Amantadine and Memantine: A Quantitative Microdialysis Study. Pharm Res 16, 637–642 (1999). https://doi.org/10.1023/A:1018856020583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018856020583

Navigation