Skip to main content
Log in

Restraint Stress-Induced Alterations in the Levels of Biogenic Amines, Amino Acids, and AChE Activity in the Hippocampus

Neurochemical Research Aims and scope Submit manuscript

Abstract

Inspite of large number of studies on the neurochemical changes in the stress, an equivocal case is yet to be made for the role of a specific neurotransmitter in this important neurobiological disorder. The difficulty arises from the fact that there is no single neurotransmitter system appears to be responsible for the stress induced damage to the hippocampal neurons. The present study evaluates the effect of restraint stress on the alterations in the levels of biogenic amines, aminoacids and acetylcholinesterase activity in the hippocampus. Male Wistar rats of 45 days old were subjected to 6 hours of daily restraint stress over a period of 21 days. Immediately after the last session of stress, rats were sacrificed and neurotransmitter levels were estimated in the hippocampus. A significant (p < 0.001) decrease in the levels of noradrenaline, dopamine, 5-hydroxytryptamine and acetylcholinesterase activity in the stressed rats was observed compared to controls. However, levels of glutamate was significantly (p < 0.001) increased in stressed rats. These results indicate that chronic restraint stress decreases aminergic and cholinergic neurotransmission, and increases the glutamatergic transmission in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Fuchs, E. and Flugge, G. 1998. Stress, glucocorticoids and structural plasticity of the hippocampus. Neurosci. Biobehav. Rev. 23:295–300.

    Google Scholar 

  2. McEwen, B. S. 1999. Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22:105–122.

    Google Scholar 

  3. Browne, A. and Finkelhor, D. 1986. Impact of child sexual abuse: a review of the research. Psychol. Bull. 99:66–77.

    Google Scholar 

  4. Kerr, D., Campbell, L., Applegate, M., Brodish, A., and Landfield, P. 1991. Chronic stress induced acceleration of electrophysiologic and morphometric biomarkers of hippocampal aging. J. Neurosci. 11:1316–1323.

    Google Scholar 

  5. Kulka, R. A., Schlenger, W. E., Fairblink, J. A., Hough, R. L., Jordan, B. K., Marmar, C. R., and Weiss, D. S. 1990. Trauma and the vietnam war generation, Brunner/Mazel, New York, NY.

    Google Scholar 

  6. Shankaranarayana Rao, B. S., Sunanda., Madhavi, R., Meti, B. L., and Raju, T. R. 1997. Restraint stress induced atrophy of apical dendrites of hippocampal CA3 neurons: Reversal by rehabilitation. Proc. 38th Annual Conf. Indian Soc. Aerospace Med. 25-26.

  7. Sunanda., Rao, M. S. and Raju, T. R., 1995. Effect of chronic restraint stress on dendritic spines and excrescences of hippocampal CA3 pyramidal neurons-a quantitative study. Brain Res. 694:312–317.

    Google Scholar 

  8. Sunanda, Shankaranarayana Rao, B. S., and Raju, T. R. 2000. Chronic restraint stress impairs acquisition and retention of spatial memory task in rats. Curr. Sci. In Press.

  9. Sapolsky, R. M., Krey, L. C., and McEwen, B. S. 1985. Prolonged glucocorticoid exposure reduces hippocampal neuron number: Implications for aging. J. Neurosci. 5:1222–1227.

    Google Scholar 

  10. Sapolsky, R. M., Uno, H., Robert, C., and Finch, C. 1990. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J. Neurosci. 10:2897–2902.

    Google Scholar 

  11. Woolley, C. S., Gould, E., and McEwen, B. S. 1990. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res. 531:225–231.

    Google Scholar 

  12. Conrad, C. D., Galea, L. A. M., Kuroda, Y., and McEwen, B. S. 1996. Chronic stress impairs rat spatial memory on the Y-maze and this effect is blocked by tianeptine pretreatment. Behav. Neurosci. 110:1321–1324.

    Google Scholar 

  13. Luine, V., Villeges, M., Martinez, C., and McEwen, B. S. 1994. Repeated stress causes reversible impairments of spatial memory performance. Brain Res. 639:167–170.

    Google Scholar 

  14. Moghaddam, B., Boliano, M. L, Stein-Behrens, B., and Sapolsky, R. 1994. Glucocorticoids mediate the stress-induced extracellular accumulation of glutamate. Brain Res. 655:251–254.

    Google Scholar 

  15. Stein-Behrens, B., Elliott, E., Miller, C., Schilling, J., Newcombe, R., and Sapolsky, R. 1992. Glucocorticoids exacerbate kainic acid induced extracellular accumulation of excitatory amino acids in the rat hippocampus. J. Neurochem. 58:730–1735.

    Google Scholar 

  16. Watanabe, Y., Gould, E., Cameron, H. A., Daniels, D. C., and McEwen, B. S. 1992. Phenytoin prevents stress and corticosterone-induced atrophy of CA3 pyramidal neurons. Hippocampus 2:431–436.

    Google Scholar 

  17. Moghaddam, B. 1993. Stress preferentially increases extra neuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J. Neurochem. 60:1650–1657.

    Google Scholar 

  18. De'Souza, E. B. and Van Loon, G. R. 1986. Brain serotonin and catecholamine responses to repeated stress in rats. Brain Res. 367:77–86.

    Google Scholar 

  19. Anisman, H. 1978. Neurochemical changes elicited by stress: behavioral correlates. Pages 119–171, in Anisman, H., and Bignami, G. (eds.), Psychopharmacology of aversively motivated behavior, Plenum press, New York.

    Google Scholar 

  20. Bliss, E. L. 1973. Effects of behavioral manipulations upon brain serotonin and dopamine. Pages 315–324, in Barchas, J. D., and Usdin, E. (eds.), Serotonin and behavior, Academic press, New York.

    Google Scholar 

  21. Goldstein, M., Sauter, A., Ueta, K., and Fuxe, K. 1980. Effect of stress on central catecholamine levels. Pages 47–52, in Usdin, E., Kvetnansky, R., and Kopin, I. J. (eds.), Catecholamines and stress: Recent advances, Elsevier/North-Holland, New York.

    Google Scholar 

  22. Roth, K. A., Mefford, I. M., and Barchas, J. D. 1982. Epinephrine, norepinephrine, dopamine and serotonin: differential effects of acute and chronic stress on regional brain amines. Brain Res. 239:417–424.

    Google Scholar 

  23. Corrodi, H., Fuxe, K., Lidbrink, P., and Olson, L. 1971. Minor trasquilizers, stress, and catecholamine neurons. Brain Res. 29: 1–16.

    Google Scholar 

  24. Lidbrink, P., Corrodi, H., Fuxe, K., and Olson, L. 1972. Barbiturates and meprobamate: decrease in catecholamine turnover on central dopamine and noradrenaline neuronal systems and the influence of immobilization stress. Brain Res. 45:507–524.

    Google Scholar 

  25. Thierry, A. M., Javoy, F., Glowinski, J., and Kety, S. S. 1968. Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. I. Modifications of norepinephrine turnover. J. Pharmacol. Exp. Ther. 163:163–171.

    Google Scholar 

  26. Acosta, G. B., Otero Losada, M. E., and M. C. Rubio. 1993. Area dependent changes in GABAergic function after acute and chronic cold stress. Neurosci. Lett. 154:175–178.

    Google Scholar 

  27. Otero Losada, M. E. 1989. Acute stress and GABAergic function in the rat brain. Br. J. Pharmacol. 96:507–512.

    Google Scholar 

  28. Gilad, G. M., Mohan, B. D., Finkelstein, Y., Koffler, B., and Gilad, V. H. 1985. Stress-induced activation of the hippocampal cholinergic system and the pituitary-adrenocortical axis. Brain Res. 347:404–408.

    Google Scholar 

  29. Sunanda., Meti, B. L., and Raju, T. R. 1997. Entorhinal cortex lesioning protects hippocampal CA3 neurons from stress-induced damage. Brain Res. 770:302–306.

    Google Scholar 

  30. Glavin, G. B., Murison, R., Overmier, J. B., Pare, W. P., Hakke, H. K., Henke, P. G., and Hernandez, D. E. 1991. The neurobiology of stress ulcers. Brain Res. Rev. 16:301–343.

    Google Scholar 

  31. Lakshmana, M. K. and Raju, T. R. 1997. An isocratic assay for norepinephrine, dopamine and 5-hydroxytryptamine using their native fluorescence by high-performance liquid chromatography with fluorescence detection in discrete brain areas of the rat. Anal. Biochem. 246:166–170.

    Google Scholar 

  32. Shankaranarayana Rao, B. S., Raju, T. R., and Meti, B. L. (1998) Self-stimulation of lateral hypothalamus and ventral tegmentum increases the levels of noradrenaline, dopamine, glutamate and AChE activity, but not 5-hydroxytryptamine and GABA levels in hippocampus and motor cortex. Neurochem. Res. 23: 1053–1059.

    Google Scholar 

  33. Sadashivudu, B. and Murthy, C. R. K. 1978. Effects of ammonia as monoamine oxidase and enzymes of GABA metabolism in mouse brain. Arch. Int. Phys. Biochem. 86:67–82.

    Google Scholar 

  34. Ellman, G. L., Vcoutney, K. D., Valentino, A. Jr., and Featherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    Google Scholar 

  35. Miura, H., Naoi, M., Nakamura, D., Ohta, T., and Nagatsu, T. 1993. Changes in monoamine levels in mouse brain elicited by forced swimming stress and the protective effect of a new monoamine oxidase inhibitor. J. Neural Trans. 94:175–189.

    Google Scholar 

  36. Cicardo, V. H., Carbone, S. E., DeRondina, D. C., and Mastronardi, I. O. 1986. Stress by forced swimming in the rat: effects of mienserin and moclobemide on GABAergic-monoaminergic systems in the brain. Comp. Biochem. Physiol. 83:133–135.

    Google Scholar 

  37. Weiss, J. M., Goodman, P. A., Losito, B. G., Corrigan, S., Charry, J. M., and Bailey, W. H. 1981. Behavioral depression produced by an uncontrollable stressors: relationships to norepinephrine, dopamine and serotonin levels in various regions in the rat brain. Brain Res. Rev. 3:43–49.

    Google Scholar 

  38. Nakamura, S. 1991. Axonal sprouting of noradrenergic locus coeruleus neurons following repeated stress and antidepressant treatment. Prog. Brain Res. 88:587–598.

    Google Scholar 

  39. Carlson, J. N., Fitzgerald, L. W., Keller, R. W.Jr., and Glick, S. D. 1993. Lateralized changes in prefrontal cortical dopamine activity induced by controllable and uncontrollable stress in the rat. Brain Res. 630:178–187.

    Google Scholar 

  40. Deutch, A. Y. and Roth, R. H. 1990. The determinants of stressinduced activation of the prefrontal cortical dopamine system. Prog. Brain Res. 85:367–402.

    Google Scholar 

  41. Dunn, A. J. 1988. Changes in plasma and brain tryptophan, and brain serotonin and 5-hydroxyindoleacetic acid after foot shock stress. Life Sci. 42:1847–1853.

    Google Scholar 

  42. Herman, J. P., Guillonneau, D., Dantzer, R., Scatton, G., Semerdjian, R. L., and LeMoal, M. 1986. Differential effects of inescapable foot shocks and of stimuli previously paired with inescapable foot shocks and on dopamine turnover in cortical and limbic areas of the rat. Life Sci. 30:2207–2214.

    Google Scholar 

  43. Curzon, G., Dickinson, S. L., and Kennett, G. A. 1984. Chronic corticosterone decreases 5-HT dependent responses in the rat. Br. J. Pharmacol. 82:207–211.

    Google Scholar 

  44. Sherman, A. D. and Petty, F. 1980. Neurochemical basis of the action of antidepressants on learned helpnessness. Behav. Biol. 30:119–134.

    Google Scholar 

  45. Kennett, G. A., Dickinson, S. L., and Curzon, G. 1985. Enhancement of some 5-HT dependent behavioral responses following repeated immobilization in rats. Brain Res. 330:253–263.

    Google Scholar 

  46. Arnsten, A. and Goldman-Rakic, P. 1985. Catecholamines and cognitive decline in aged nonhuman primates. Ann. NY Acad. Sci. 444:218–234.

    Google Scholar 

  47. Altman, H. J., Ogren, S. O., Berman, R. F., and Normile, N. J. 1989. The effects of p-chloroamphetamine, a depletor of brain serotonin, on the performance of rats in two types of positively reinforced complex spatial discrimination tasks. Behav. Neural Biol. 52:131–144.

    Google Scholar 

  48. Decker, M. W. and McGaugh, J. L. 1989. Effects of concurrent manipulations of cholinergic and noradrenergic function on learning and retention in mice. Brain Res. 477:29–37.

    Google Scholar 

  49. Luine, V., Bowling, D., and Hearns, M. 1990. Spatial memory deficits in aged rats: contributions of monoaminergic systems. Brain Res. 537:271–278.

    Google Scholar 

  50. Wenk, G., Hughley, D., Boundy, V., Kim, A., Walker, L., and Olton, D. 1987. Neurotransmitters and memory: role of cholinergic, serotonergic and noradrenergic systems. Behav. Neurosci. 101:325–332.

    Google Scholar 

  51. Gilad, G. M., Gilad, V. H., Wyatt, R. J., and Tizabi, Y. 1990. Region selective stress-induced increase of glutamate uptake and release in rat forebrain. Brain Res. 525: 335–338.

    Google Scholar 

  52. Virgin, C. E. Jr., Ha, T. P. T., Pakan, D. R., Tombaugh, G. C., Yang, S. H., Horner, H. C., and Sapolsky, R. M. 1991. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurhotoxicity. J. Neurochem. 57:1422–1428.

    Google Scholar 

  53. Sunanda., Shankaranarayana Rao, B. S., and Raju, T. R., 1998. Corticosterone attenuates zinc-induced neurotoxicity in primary hippocampal cultures. Brain Res. 791:295–298.

    Google Scholar 

  54. Milakofsky, L., Hari, T. A., Miller, J. M., and Vogel, W. H. 1985. Rat plasma levels of aminoacids related compounds during stress. Life Sci. 36:753–761.

    Google Scholar 

  55. Armanini, M., Huchins, C., Stein, B., and Sapolsky, R. 1990. Glucocorticoid endangerment of hippocampal neurons is NMDA receptor-dependent. Brain Res. 532:7–13.

    Google Scholar 

  56. Headley, P. M. and Grillner, S. 1990. Excitatory aminoacids and synaptic transmission: the evidence for a physiological function. Trends Pharmacol. Sci. 11:205–211.

    Google Scholar 

  57. Krugers, H. J., Kollhaas, J. M., Bohus, B., and Korf, J. 1993. A single social stress experience alters glutamate receptor-binding in rat hippocampal CA3 area. Neurosci. Lett. 154:73–77.

    Google Scholar 

  58. Rupshi, M., Shankaranarayana Rao, B. S., Vyas, A., Sharath, B. S., and Chattarji, S. 1999. Immobilization stress affect the expression of brain-derived neurotrophic factor and glutamate receptors mRNA in the hippocampus. Proc. Int. Colloq. Brain Res. B24.

  59. Smith, M. A., Makino, S., Kvetnansky, R., and Post, R. M. 1995. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J. Neurosci. 15:1768–1777.

    Google Scholar 

  60. Magarinos, A. M. and McEwen, B. S. 1995. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory aminoacid receptors. Neuroscience 69:89–98.

    Google Scholar 

  61. Meldrum, B. and Garthwaite, J. 1990. Excitatory amino acid neurotoxicity and neurodegenerative diseases. Trends Pharmacol. Sci. 11:379–385.

    Google Scholar 

  62. Pavlides, C., Watanabe, Y., and McEwen, B. S. 1993. Effects of glucocorticoids on hippocampal long-term potentiation. Hippocampus 3:183–192.

    Google Scholar 

  63. Shors, T. J. and Dryver, E. 1994. Effect of stress and long-term potentiation (LTP) on subsequent LTP and the theta burst response in the dentate gyrus. Brain Res. 666:232–238.

    Google Scholar 

  64. Garcia, R., Musleh, W., Tocco, G., Thompson, R. F., and Baudry, M. 1997. Time-dependent blockade of STP and LTP in hippocampal slices following acute stress in mice. Neurosci. Lett. 233:41–44.

    Google Scholar 

  65. McEwen B. S. 1996. Gonadal and adrenal steroids regulate neurochemical and structural plasticity of the hippocampus via cellular mechanisms involving NMDA receptors. Cell Mol. Neurobiol. 16:103–116.

    Google Scholar 

  66. Yoneda, Y., Kanmori, K., Ida, S., and Kuriyama, K. 1983. Stressinduced alterations in metabolism of GABA in rat brain. J. Neurochem. 40:350–356.

    Google Scholar 

  67. Saji, M. and Reis, D. J. 1987. Delayed transneuronal death of substantia nigra neurons prevented by GABA agonist. Science 235:66–69.

    Google Scholar 

  68. Sternau, L. L., Lust, W. D., Ricci, A. J., and Ratcheson, R. 1989. Role of GABA in selective vulnerability in gerbils. Stroke 20: 281–287.

    Google Scholar 

  69. Anisman, H., Kokkinidis, l., and Sklar, L. S. 1981. Contribution of neurochemical change to stress-induced behavioral deficits. Pages 65–102, in Cooper, S. J. (ed.), Theory in psychopharmacology, Academic press, London.

    Google Scholar 

  70. Helper, D. J., Olton, D. s., Wenk, G. l., and Coyle, J. T. 1985. Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments. J. Neurosci. 5:866–873.

    Google Scholar 

  71. Nabeshima, T., Ogawa, S., Nishimura, H., Fuji, K., Kameyama, T., and Sasaki, Y. 1991. Staurosporine facilitates recovery from the basal forebrain lesion induced impairment of learning and deficit of cholinergic neuron in rats. J. Pharmacol. Exp. Therap. 45:81–87.

    Google Scholar 

  72. Aigren, T. G. and Mishkin, M. 1986. The effects of physostigmine and scopalamine on recognition memory in monkeys. Behav. Neural Biol. 45:81–87.

    Google Scholar 

  73. Ito, J., Nabeshima, T., and Kameyama, T. 1990. Utility of an elevated plus maze for the evaluation of memory in mice: effects of nootrophics, scopalamine and electroconvulsive shock. Psychopharmacology 101:27–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunanda, Rao, B.S.S. & Raju, T.R. Restraint Stress-Induced Alterations in the Levels of Biogenic Amines, Amino Acids, and AChE Activity in the Hippocampus. Neurochem Res 25, 1547–1552 (2000). https://doi.org/10.1023/A:1026606201069

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026606201069

Navigation