Skip to main content
Log in

Metabotropic Glutamate Receptor Expression in Cultured Rat Astrocytes and Human Gliomas

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In order to confirm the existence of metabotropic glutamate receptors in astroglial cultures and to provide information on different receptor subtypes, the expression of different mOIuRs was analysed in cultures highly enriched in rat astroglial cells. mRNA levels for mGluR1, 2, 3, 4, 7 were undetectable by Northern blot analysis in primary type-1 astroglial cultures derived from total cerebral hemispheres, cerebral cortex and striatum. Interestingly, these cultures expressed a low, but detectable, level of mGluR5 mRNA. The more sensitive technique Reverse Transcription-Polymerase Chain Reaction (RT-PCR) confirmed the presence of mGluR5 transcript in cultured astrocytes and, in addition, revealed the presence of mGluR3 mRNA. The lack of expression of mGluR5 in CG-4 cells, a rat cell line able to differentiate in type-2 astrocytes or oligodendrocytes depending on the culture conditions, suggested that the presence of mGluR5 was not a general feature of cells of glial origin. Moreover, all the examined mGluR transcripts were undetectable by RT-PCR in CG4 cells. In order to confirm the possible expression of mGluR5 in cell of glial origin we examined the mRNA levels for this receptor in tissue samples from human gliomas obtained after surgical resection of the tumors: only 1 sample (grade II astrocytoma), out of 8 examined, showed the presence of mGluR5 mRNA. In conclusion our data show that the only cloned metabotropic receptor linked to phosphoinositide hydrolysis, whose expression is detectable in cultured type-1 astrocytes, is mGluR5. It remains to be established if the low level of expression of mGluR3 could be responsible for the group II metabotropic glutamate receptor activity previously observed in cultured astroglial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Nakanishi, S., and Masu, M. 1994. Molecular diversity and functions of glutamate receptors. Annu Rev Biophys Biomol Struct. 23:319–348.

    Google Scholar 

  2. Schoepp, D. D. 1994. Novel functions for subtypes of the metabotropic glutamate receptors. Neurochem Int 24:439–449.

    Google Scholar 

  3. Pin, J. P., and Duvoisin, R. 1995. The metabotropic glutamate receptors: structure and functions. Neuropharmacology. 34:1–26.

    Google Scholar 

  4. Teichberg, V. I. 1991. Glial glutamate receptors: likely actors in brain signaling. FASEB J. 5:3086–3091.

    Google Scholar 

  5. Gallo, V., and Russel, J. T. 1995. Excitatory amino acid receptors in glia: different subtypes for distinct functions? J.Neurosci. Res. 42:1–8.

    Google Scholar 

  6. Bowman, C. L., and Kimelberg, H. K. 1984. Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature 311:656–659.

    Google Scholar 

  7. Kettenman, H., and Schachner, M. 1985. Pharmacological properties of γ-aminobutyric acid-, glutamate-, and aspartate-induced depolarization in cultured astrocytes. J. Neurosci. 5: 3295–3301.

    Google Scholar 

  8. Sontheimer, H., Kettenman, H., Bckus, K. H., and Schachner, M. 1989. Glutamate opens Na+/K+ channels in cultured astrocytes. Glia 1:328–336.

    Google Scholar 

  9. Backus, K. H., Kettenman H., and Schachner, M. 1989. Pharmacological characterization of the glutamate receptor in cultured astrocytes. J. Neurosci. Res. 22:274–282.

    Google Scholar 

  10. Gallo, V., Upson, L. M., Hayes, W. P., Vyklicky, L., Winters, C., and Buonanno, A. 1992. Molecular Cloning and developmental analysis of a new glutamate receptor subunit isoform in cerebellum. J.Neurosci. 12:1010–1023.

    Google Scholar 

  11. Condorelli, D. F., Dell'Albani, P., Corsaro, M., Barresi, V., and Giuffrida Stella A. M. 1993. AMPA-selective glutamate receptor subunits in astroglial cultures. J. Neurosci. Res. 36:344–356.

    Google Scholar 

  12. Patneau, D. K., Wright, P. W., Winters, C., Mayer, M. L., and Gallo, V. 1994. Glial cells of the oligodendrocyte lineage express both kainate-and AMPA-preferring subtypes of glutamate receptor. Neuron. 12:357–371.

    Google Scholar 

  13. Pearce, B., Albrecht, J., Morrow, C., and Murphy, S. 1987. Astrocytes glutamate receptor activation promotes inositol phospholipid turnover and calcium flux. Neurosci. Lett. 72: 335–340.

    Google Scholar 

  14. Milani, D., Facci, L., Guidolin, D., Leon, A., and Skaper, S. D. 1989. Activation of polyphosphoinositide metabolism as a signal-transducing system coupled to excitatory amino acid receptors in astroglial cells. Glia. 2:161–169.

    Google Scholar 

  15. Nicoletti, F., Magri', G., Ingrao, F., Bruno, V., Catania, M. V., Dell'Albani, P., Condorelli, D. F., and Avola, R. 1990. Excitatory amino acids stimulate inositol phospholipid hydrolysis and reduce proliferation in cultured astrocytes. J. Neurochem. 54:771–777.

    Google Scholar 

  16. Condorelli, D. F., Ingrao, F., Magri', G., Bruno, V., Nicoletti, F., and Avola, R. 1989a. Activation of excitatory amino acid receptors reduces thymidine incorporation and cell proliferation rate in primary cultures of astrocytes. Glia. 2:67–69.

    Google Scholar 

  17. Condorelli, D. F., Kaczmarek, L., Nicoletti, F., Arcidiacono, A., Dell'Albani, P., Ingrao, F., Magri', G., Malaguarnera, L., Avola, R., Messina, A., and Giuffrida Stella, A. M. 1989b. Induction of protooncogene fos by extracellular signals in primary glial cell cultures. J. Neurosci. Res. 23:234–239.

    Google Scholar 

  18. McNaughton, L. A., and Hunt, S. P. 1992. Regulation of gene expression in astrocytes by excitatory amino acids. Mol. Brain Res. 16:261–266.

    Google Scholar 

  19. Condorelli, D. F., Dell'Albani, P., Amico, C., Kaczmarek, L., Nicoletti, F., Lukasiuk, K., and Giuffrida Stella, A. M. 1993a. Induction of primary response genes by excitatory amino acid agonists in primary astroglial cultures. J. Neurochem. 60:877–885.

    Google Scholar 

  20. Enkvist, M. O. H., Holopainen, I., and Akerman, K. E. O. 1989. Glutamate receptor-linked changes in membrane potential and intracellular Ca2+ in primary rat astrocytes. Glia. 2:397–402.

    Google Scholar 

  21. Ahmed, Z., Lewis, C. A., and Faber, D. S. 1990. Glutamate stimulates release of Ca2+ from internal stores in astroglia. Brain Res. 516:165–169.

    Google Scholar 

  22. Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M., and Smith, S. J. 1990. Glutamate induces calcium vawes in cultured astrocytes: long range glial signaling. Science. 247:470–473.

    Google Scholar 

  23. Glaum, S. R., Holzwarth, J. A., and Miller, R. J. 1990. Glutamate receptors activate Ca2+ mobilization and Ca2+ influx into astrocytes. Proc. Natl. Acad: Sci. USA 87:3454–3458.

    Google Scholar 

  24. Jensen, A. M., and Chiu, S. Y. 1990. Fluorescence measurement of changes in intracellular calcium induced by excitatory amino acids in cultured cortical astrocytes. J. Neurosci. 10:1165–1175.

    Google Scholar 

  25. Charles, A. C., Merril, J. E., Dirksen, E. R., and Sanderson, M. J. 1991. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron. 6:983–992.

    Google Scholar 

  26. Schubert, D., Heinemann, S., Carlisle, W., Tarikas, H., Kimes, B., Patrick, J., Steinbach, J. H., Culp, W., and Brandt, B. L. 1974. Clonal cell lines from the rat central nervous system. Nature 249: 224–227.

    Google Scholar 

  27. Louis, J. C., Magal, E., Muir, D., Manthorpe, M., and Varon, S. 1992. CG-4, a new bipotential glial cell line from rat brain, is capable of differentiating in vitro into either mature oligodendrocytes or type-2 astrocytes. J Neurosci Res. 31:193–204.

    Google Scholar 

  28. Kahn, M. A., and De Vellis, J. 1994. Regulation of an oligodendrocyte progenitor cell line by the interleukin-6 family of cytokines. Glia. 12:87–98.

    Google Scholar 

  29. Chomczynski, P., and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.

    Google Scholar 

  30. Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R., and Nakanishi, S. 1991. Sequence and expression of a metabotropic glutamate receptor. Nature. 349:760–765.

    Google Scholar 

  31. Tanabe, Y., Masu, M., Ishii, T., Shigemoto, R., and Nakanishi, S. 1992. A family of metabotropic glutamate receptors. Neuron. 8: 169–179.

    Google Scholar 

  32. Abe, T., Sugihara, H., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. 1992. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J. Biol. Chem. 267:13361–13368.

    Google Scholar 

  33. Okamoto, N., Hori, S., Akazawa, C., Hayashi, Y., Shigemoto, R., Mizunu, N., and Nakanishi, S. 1994. Molecular Characterization of a New Metabotropic Glutamate Rceptor mGluR7 Coupled to Inhibitory Cyclic AMP Signal Transduction. J. Bio. Chem. 269: 1231–1236.

    Google Scholar 

  34. Feinberg, A. P., and Vogelstein, B. 1984. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 137:266–267.

    Google Scholar 

  35. Condorelli, D. F., Dell'Albani, P., Amico, C., Casabona, G., Gennazzani, A. A., Sortino, M. A., and Nicoletti, F. 1992. Developmental profile of metabotropic glutamate receptor mRNA in rat brain. Mol. Pharmacol. 41:660–664.

    Google Scholar 

  36. Tanabe, Y., Nomura, A., Masu, M., Shigemoto, R., and Nakanishi, S. 1993. Signal trasduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neurosci. 13:1372–1378.

    Google Scholar 

  37. Ohishi, H., Ogawa-Meguro, R., Shigemoto, R., Kaneko, T., Nakanishi, S., and Mizuno, N. 1994. Immunohistochemical localization of metabotropic glutamate receptors, mGluR2 and mGluR3, in rat cerebellar cortex. Neuron. 13:55–66.

    Google Scholar 

  38. Testa, C. M., Standaert, D. G., Young, A. B., and Penney, J. B. 1994. Metabotropic glutamate receptor expression in the basal ganglia of the rat. J. Neurosci. 14(5):3005–3018.

    Google Scholar 

  39. Raff, M. C. 1989. Glial cell diversification in the rat optic nerve. Science 243:1450–1455.

    Google Scholar 

  40. Miller, S., Bridges, R. J., and Cotman, C. W. 1993. Stimulation of phosphoinositide hydrolysis by trans-(±)-ACPD is greatly enhancedwhen astrocytes are cultured in a serum-free defined medium. Brain Res. 618:175–178.

    Google Scholar 

  41. Segelon, J. E., Lipscomb, D. C., Haun, S. E., Trapp, V. L., and Horrocks, L. A. 1995. Astroglial phosphoinositide hydrolysis during combined glucose-oxygen deprivation: role of the metabotropic glutamate receptor. J Neurochem. 65:1115–1123.

    Google Scholar 

  42. Miller, S., Sehati, N., Romano, C., and Cotman, C. W. 1996. Exposure of astrocytes to thrombin reduces levels of the metabotropic glutamate receptor mGluR5. J. Neurochem. 67:1435–1447.

    Google Scholar 

  43. Balázs, R., Miller, S., Romano, C., Chun, Y., de Vries, A., and C. Cotman. 1996. Metabotropic glutamate receptors in cerebral cortical astrocytes: pharmacological properties of mGluR5 and interaction between PLC-and adenylate cyclase (AC)-coupled transduction systems. Neuropharmacol. 5:A2.

    Google Scholar 

  44. Prezeau, L., Carrette, J., Helpap, B., Curry, K., Pin, J. P., and Bockaert, J. 1993. Pharmacological characterization of metabotropic glutamate receptors in several types of brain cells in primary cultures. Mol. Pharmacol. 45:570–577.

    Google Scholar 

  45. Miller, S., Romano, C., and Cotman, C. W. 1995. Growth factor upregulation of a phosphoinositide-coupled metabotropic glutamate receptor in cortical astrocytes. J. Neurosci. 15(9):6103–6109

    Google Scholar 

  46. Louis, D. N., and Gusella, J.F. 1995. A tiger many doors: multiple genetic payhways to malignant glioma. Trends in Genetics 11: 412–415.

    Google Scholar 

  47. Baba, A., Saga, H., and Hashimoto, H. 1993. Inhibitory glutamate response on cyclic AMP formation in cultured astrocytes. Neuroscience letters. 149:182–184.

    Google Scholar 

  48. Ogata, T., Nakamura, Y., and Schubert, P. 1996. Potentiated cAMP rise in metabotropically stimulated rat cultured astrocytes by a Ca++ related A1/A2 adenosine receptor cooperation. Eur. J. Neurosci 8:1124–1131.

    Google Scholar 

  49. Winder, D. G., Ritch, P. S., Gereau, R. W., and Conn, P. J. 1996. Novel glial-neuronal signalling by coactivation of metabotropic glutamate and β-adrenergic receptors in rat hippocampus. J Physiol. 494:743–755.

    Google Scholar 

  50. Winder, D. G., and Conn, J. P. 1996. Roles of metabotropic glutamate receptors in glial function and glial-neuronal communication. J. Neurosci. Res. 46:131–137.

    Google Scholar 

  51. Ohishi, H., Shigemoto, R., Nakanishi, S., and Mizuno, N. 1993. Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J. Comp. Neurol. 335:252–266.

    Google Scholar 

  52. Petralia, R. S., Wang, Y.-X., Niedzielski, A. S., and Wenthold, R. J. 1996. The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 71:949–976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Condorelli, D.F., Dell'Albani, P., Corsaro, M. et al. Metabotropic Glutamate Receptor Expression in Cultured Rat Astrocytes and Human Gliomas. Neurochem Res 22, 1127–1133 (1997). https://doi.org/10.1023/A:1027317319166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027317319166

Navigation