Skip to main content
Log in

Deadly Conversations: Nuclear-Mitochondrial Cross-Talk

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Neuronal damage following stroke or neurodegenerative diseases is thought to stem in part from overexcitation of N-methyl-D-aspartate (NMDA) receptors by glutamate. NMDA receptors triggered neurotoxicity is mediated in large part by activation of neuronal nitric oxide synthase (nNOS) and production of nitric oxide (NO). Simultaneous production of superoxide anion in mitochondria provides a permissive environment for the formation of peroxynitrite (ONOO−). Peroxynitrite damages DNA leading to strand breaks and activation of poly(ADP-ribose) polymerase-1 (PARP-1). This signal cascade plays a key role in NMDA excitotoxicity, and experimental models of stroke and Parkinson's disease. The mechanisms of PARP-1-mediated neuronal death are just being revealed. While decrements in ATP and NAD are readily observed following PARP activation, it is not yet clear whether loss of ATP and NAD contribute to the neuronal death cascade or are simply a biochemical marker for PARP-1 activation. Apoptosis-inducing factor (AIF) is normally localized to mitochondria but following PARP-1 activation, AIF translocates to the nucleus triggering chromatin condensation, DNA fragmentation and nuclear shrinkage. Additionally, phosphatidylserine is exposed and at a later time point cytochrome c is released and caspase-3 is activated. In the setting of excitotoxic neuronal death, AIF toxicity is caspase independent. These observations are consistent with reports of biochemical features of apoptosis in neuronal injury models but modest to no protection by caspase inhibitors. It is likely that AIF is the effector of the morphologic and biochemical events and is the commitment point to neuronal cell death, events that occur prior to caspase activation, thus accounting for the limited effects of caspase inhibitors. There exists significant cross talk between the nucleus and mitochondria, ultimately resulting in neuronal cell death. In exploiting this pathway for the development of new therapeutics, it will be important to block AIF translocation from the mitochondria to the nucleus without impairing important physiological functions of AIF in the mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Arnoult, D., Tatischeff, I., Estaquier, J., Girard, M., Sureau, F., Tissier, J. P., Grodet, A., Dellinger, M., Traincard, F., Kahn, A., Ameisen, J. C., and Petit, P. X. (2001). Mol. Biol. Cell 12, 3016–3030.

    PubMed  Google Scholar 

  • Berger, N. A., and Berger, S. J. (1986). Basic Life Sci. 38, 357–363.

    PubMed  Google Scholar 

  • Berger, N. A., Sims, J. L., Catino, D. M., and Berger, S. J. (1983). Princess Takamatsu Symp. 13, 219–226.

    PubMed  Google Scholar 

  • Braun, J. S., Novak, R., Murray, P. J., Eischen, C. M., Susin, S. A., Kroemer, G., Halle, A., Weber, J. R., Tuomanen, E. I., and Cleveland, J. L. (2001). J Infect. Dis. 184, 1300–1309.

    PubMed  Google Scholar 

  • Cande, C., Cohen, I., Daugas, E., Ravagnan, L., Larochette, N., Zamzami, N., and Kroemer, G. (2002). Biochimie 84, 215–222.

    PubMed  Google Scholar 

  • Chan, P. H. (2001). J. Cereb. Blood Flow Metab. 21,2–14.

    PubMed  Google Scholar 

  • Chiarugi, A. (2002). Trends Pharmacol. Sci. 23, 122–129.

    PubMed  Google Scholar 

  • Cregan, S. P., Fortin, A., MacLaurin, J. G., Callaghan, S. M., Cecconi, F., Yu, S. W., Dawson, T. M., Dawson, V. L., Park, D. S., Kroemer, G., and Slack, R. S. (2002). J. Cell Biol. 158, 507–517.

    PubMed  Google Scholar 

  • Dawson, V. L., and Dawson, T. M. (1998). Prog. Brain. Res. 118, 215–229.

    PubMed  Google Scholar 

  • de Murcia, G., and Menissier de Murcia, J. (1994). Trends Biochem. Sci. 19, 172–176.

    PubMed  Google Scholar 

  • Dirnagl, U., ladecola, C., and Moskowitz, M. A. (1999). Trends Neurosci. 22, 391–397.

    PubMed  Google Scholar 

  • Eliasson, M. J., Sampei, K., Mandir, A. S., Hurn, P. D., Traystman, R. J., Bao, J., Pieper, A., Wang, Z. Q., Dawson, T. M., Snyder, S. H., and Dawson, V. L. (1997). Nat. Med., 3, 1089–1095.

    PubMed  Google Scholar 

  • Endres, M., Wang, Z. Q., Namura, S., Waeber, C., and Moskowitz, M. A. (1997). J. Cereb. Blood Flow Metab. 17, 1143–1151.

    PubMed  Google Scholar 

  • Goto, S., Xue, R., Sugo, N., Sawada, M., Blizzard, K. K., Poitras, M. F., Johns, D. C., Dawson, T. M., Dawson, V. L., Crain, B. J., Traystman, R. J., Mori, S., and Hurn, P. D. (2002). Stroke 33, 1101–1106.

    PubMed  Google Scholar 

  • Hageman, G. J., and Stierum, R. H. (2001). Mutat. Res. 475,45–56.

    PubMed  Google Scholar 

  • Hisatomi, T., Sakamoto, T., Goto, Y., Yamanaka, I., Oshima, Y., Hata, Y., Ishibashi, T., Inomata, H., Susin, S. A., and Kroemer, G. (2002). Curr. Eye Res. 24, 161–172.

    PubMed  Google Scholar 

  • Ischiropoulos, H., and Beckman, J. S. (2003). J. Clin. Invest. 111, 163–169.

    PubMed  Google Scholar 

  • Joza, N., Susin, S. A., Daugas, E., Stanford, W. L., Cho, S. K., Li, C. Y., Sasaki, T., Elia, A. J., Cheng, H. Y., Ravagnan, L., Ferri, K. F., Zamzami, N., Wakeham, A., Hakem, R., Yoshida, H., Kong, Y. Y., Mak, T. W., Zuniga-Pflucker, J. C., Kroemer, G., and Penninger, J. M. (2001). Nature 410, 549–554.

    PubMed  Google Scholar 

  • Klein, J. A., Longo-Guess, C. M., Rossmann, M. P., Seburn, K. L., Hurd, R. E., Frankel, W. N., Bronson, R. T., and Ackerman, S. L. (2002). Nature, 419, 367–374.

    PubMed  Google Scholar 

  • Kristian, T., and Siesjo, B. K. (1998). Stroke 29, 705–718.

    PubMed  Google Scholar 

  • Lassus, P., Opitz-Araya, X., and Lazebnik, Y. (2002). Science, 297, 1352–1354.

    PubMed  Google Scholar 

  • Lindahl, T., Satoh, M. S., Poirier, G. G., and Klungland, A. (1995). Trends Biochem. Sci. 20, 405–411.

    PubMed  Google Scholar 

  • Lipton, P. (1999). Physiol. Rev. 79, 1431–1568.

    PubMed  Google Scholar 

  • Loeffler, M., Daugas, E., Susin, S. A., Zamzami, N., Metivier, D., Nieminen, A. L., Brothers, G., Penninger, J. M., and Kroemer, G. (2001). FASEB J. 15, 758–767.

    PubMed  Google Scholar 

  • Mandir, A. S., Pizedborski, S., Jackson-Lewis, V., Wang, Z. Q., Simbulan-Rosenthal, C. M., Smulson, M. E., Hoffman, B. E., Guastella, D. B., Dawson, V. L., and Dawson, T. M. (1999). Proc. Natl. Acad. Sci. USA 96, 5774–5779.

    PubMed  Google Scholar 

  • Mate, M. J., Ortiz-Lombardia, M., Boitel, B., Haouz, A., Tello, D., Susin, S. A., Penninger, J., Kroemer, G., and Alzari, P. M. (2002). Nat. Struct. Biol. 9, 442–446.

    PubMed  Google Scholar 

  • Mayer, M. L., and Westbrook, G. L. (1987). Prog. Neurobiol. 28, 197–276.

    PubMed  Google Scholar 

  • Miramar, M. D., Costantini, P., Ravagnan, L., Saraiva, L. M., Haouzi, D., Brothers, G., Penninger, J. M., Peleato, M. L., Kroemer, G., and Susin, S. A. (2001). J. Biol. Chem., 276, 16391–16398.

    PubMed  Google Scholar 

  • Robertson, J. D., Enoksson, M., Suomela, M., Zhivotovsky, B., and Orrenius, S. (2002). J. Biol. Chem., 277, 29808–29809.

    Google Scholar 

  • Samdani, A. F., Dawson, T. M., and Dawson, V. L. (1997). Stroke 28, 1283–1288.

    PubMed  Google Scholar 

  • Susin, S. A., Daugas, E., Ravagnan, L., Samejima, K., Zamzami, N., Loeffler, M., Costantini, P., Ferri, K. F., Irinopoulou, T., Prevost, M. C., Brothers, G., Mak, T. W., Penninger, J., Earnshaw, W. C., and Kroemer, G. (2000). J. Exp. Med. 192, 571–580.

    PubMed  Google Scholar 

  • Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G. (1999). Nature 397, 441–446.

    PubMed  Google Scholar 

  • Szabo, C., and Dawson, V. L. (1998). Trends Pharmacol. Sci. 19, 287–298.

    PubMed  Google Scholar 

  • Wang, X., Yang, C., Chai, J., Shi, Y., and Xue, D. (2002). Science, 298, 1587–1592.

    PubMed  Google Scholar 

  • Ye, H., Cande, C., Stephanou, N. C., Jiang, S., Gurbuxani, S., Larochette, N., Daugas, E., Garrido, C., Kroemer, G., and Wu, H. (2002). Nat. Struct. Biol. 9, 680–684.

    PubMed  Google Scholar 

  • Yu, S. W. Wang, H., Poitras, M. F., Coombs, C., Bowers, W. J., Federoff, H. J., Poirier, G. G., Dawson, T. M., and Dawson, V. L. (2002). Science 297, 259–263.

    PubMed  Google Scholar 

  • Zamzami, N., El Hamel, C., Maisse, C., Brenner, C., Munoz-Pinedo, C., Belzacq, A. S., Costantini, P., Vieira, H., Loeffler, M., Molle, G., and Kroemer, G. (2000). Oncogene, 19, 6342–6350.

    PubMed  Google Scholar 

  • Zhang, J., Dawson, V. L., Dawson, T. M., and Snyder, S. H. (1994). Science 263, 687–689.

    PubMed  Google Scholar 

  • Zhang, X., Chen, J., Graham, S. H., Du, L., Kochanek, P. M., Draviam, R., Guo, F., Nathaniel, P. D., Szabo, C., Watkins, S. C., and Clark, R. S. (2002). J. Neurochem. 82, 181–191.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawson, V.L., Dawson, T.M. Deadly Conversations: Nuclear-Mitochondrial Cross-Talk. J Bioenerg Biomembr 36, 287–294 (2004). https://doi.org/10.1023/B:JOBB.0000041755.22613.8d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOBB.0000041755.22613.8d

Navigation