Skip to main content
Log in

Neuromodulatory Control of Neocortical Microcircuits with Activity-Dependent Short-Term Synaptic Depression

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

A biophysical model of a neocortical microcircuit system is formulated and employed in studies of neuromodulatory control of dynamics and function. The model is based on recent observations of reciprocal connections between pyramidal cells and inhibitory interneurons and incorporates a new type of activity-dependent short-term depression of synaptic couplings recently observed. The model neurons are of a low-dimensional type also accounting for neuronal adaptation, i.e. the coupling between neuronal activity and excitability, which can be regulated by various neuromodulators in the brain. The results obtained demonstrate a capacity for neuromodulatory control of dynamical mode linked to functional mode. The functional aspects considered refer to the observed resolution of multiple objects in working memory as well as the binding of different features for the perception of an object. The effects of neuromodulators displayed by the model are in accordance with many observations on neuromodulatory influence on cognitive functions and brain disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Buhl, E.H., Tamás, G., Szilágyi, T., Stricker, C., Paulsen, O. and Somogyi, P.: Effect, Number and Location of Synapses Made by Single Pyramidal Cells onto Aspiny Interneurones of Cat Visual Cortex, J. Physiol. 500 (1997), 689-713.

    Google Scholar 

  2. Tamás, G., Buhl, E.H. and Somogyi, P.: Fast IPSPs Elicited Via Multiple Synaptic Release Sites by Different Types of GABAergic Neurone in the Cat Visual Cortex, J. Physiol. 500 (1997), 715-738.

    Google Scholar 

  3. Reyes, A., Lujan, R., Rozov, A., Burnashev, N., Somogyi, P. and Sakmann, B.: Target-Cell-Specific Facilitation and Depression in Neocortical Circuits, Nature Neurosci. 1 (1998), 279-285.

    Google Scholar 

  4. Zilberter, Y., Kaiser, K.M.M. and Sakmann, B.: Dendritic GABA Release Depresses Excitatory Transmission Between Layer 2/3 Pyramidal and Bitufted Neurons in Rat Neocortex, Neuron 24 (1999), 979-988.

    Google Scholar 

  5. Zilberter, Y.: Dendritic Release of Glutamate Suppresses Synaptic Inhibition of Pyramidal Neu-rons in Rat Neocortex, J. Physiol. 528 (2000), 489-496.

    Google Scholar 

  6. Hellwig, B.: A Quantitative Analysis of the Local Connectivity Between Pyramidal Neurons in Layers 2/3 of the Rat Visual Cortex, Biol. Cybern. 82 (2000), 111-121.

    Google Scholar 

  7. Peters, A. and Kara, D.A.: The Neuronal Composition of Area 17 of Rat Visual Cortex. I. The pyramidal cells, J. Compar. Neurol. 234 (1985), 218-241.

    Google Scholar 

  8. Katz, B. and Miledi, R.: The Effect of Calcium on Acetylcholine Release from Motor Nerve Terminals, Proc. R. Soc. Lond B 161 (1965), 496-503.

    Google Scholar 

  9. Dodge, Jr., F.A. and Rahamimoff, R.: Co-operative Action of Calcium Ions in Transmitter Release at the Neuromuscular Junction, J. Physiol. 193 (1967), 419–432.

    Google Scholar 

  10. Betz, W.J.: Depression of Transmitter Release at the Neuromuscular Junction of the Frog, J. Physiol. 206 (1970), 629–644.

    Google Scholar 

  11. Magleby, K.L.: Short-term changes in synaptic efficacy, in G.M. Edelman, V.E. Gall and K.M. Cowan (eds.) Synaptic Function, John Wiley and Sons, New York, (1987), pp. 21–56.

    Google Scholar 

  12. Zucker, R.S.: Short-Term Synaptic Plasticity, Annu. Rev. Neurosci. 12 (1989), 13-31.

    Google Scholar 

  13. Malenka, R.C.: Synaptic Plasticity in the Hippocampus: LTP and LTD, Cell 78 (1994), 535-538.

    Google Scholar 

  14. Huang, Y.-Y., Nguyen, P.V., Abel, T., and Kandel, E.R.: Long-Lasting Forms of Synaptic Potentiation in the Hippocampus, Learning Mem. 3 (1996), 74-85.

    Google Scholar 

  15. Abbott, L.F., Varela, J.A., Sen, K. and Nelson, S.B.: Synaptic Depression and Cortical Gain Control, Science 275 (1997), 220-224.

    Google Scholar 

  16. Dobrunz, L.E. and Stevens, C.F.: Heterogeneity of Release Probability, Facilitation, and Depletion at Central Synpases, Neuron 18 (1997), 995-1008.

    Google Scholar 

  17. Murthy, V.N., Sejnowski, T.J. and Stevens, C.F.: Heterogeneous Release Properties of Visualized Individual Hippocampal Synapses, Neuron 18 (1997), 599-612.

    Google Scholar 

  18. Nelson, S.B., Varela, J.A., Sen, K. and Abbott, L.F.: Functional significance of synaptic depres-sion between cortical neurons, in J.M. Bower (ed.) Computational Neuroscience, Plenum Press, New York, (1997), pp. 429-434.

    Google Scholar 

  19. Tsodyks, M.V. and Markram, H.: The Neural Code Between Neocortical Pyramidal Neurons Depends on Neurotransmitter Release Probability, Proc. Natl. Acad. Sci. USA 94 (1997), 719-723.

    Google Scholar 

  20. Varela, J.A., Sen, K., Fost, J., Abbott, L.F. and Nelson, S.B.: A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex, J. Neurosci. 17 (1997), 7926-7940.

    Google Scholar 

  21. Markram, H., Wang, Y. and Tsodyks, M.: Differential Signaling Via the Same Axon of Neocortical Pyramidal Neurons, Proc. Natl. Acad. Sci. USA 95 (1998), 5323-5328.

    Google Scholar 

  22. Cartling, B.: Stochastic and Reduced Biophysical Models of Synaptic Transmission, J. Biol. Phys. 26 (2000), 113-131.

    Google Scholar 

  23. Cartling, B.: Control of Neural Information Transmission by Synaptic Dynamics, J. Theor. Biol. 214 (2002), 275-292.

    Google Scholar 

  24. Cartling, B.: A Generalized Neuronal Activation Function Derived from Ion-Channel Characteristics, Network 6 (1995), 389-401.

    Google Scholar 

  25. Cartling, B.: Response Characteristics of a Low-Dimensional Model Neuron, Neural Comput. 8 (1996), 1643-1652.

    Google Scholar 

  26. Cartling, B.: Control of the Complexity of Associative Memory Dynamics by Neuronal Adaptation, Int. J. Neural Syst. 4 (1993), 129-141.

    Google Scholar 

  27. Cartling, B.: Autonomous Neuromodulatory Control of Associative Processes, Network, 6 (1995), 247-260.

    Google Scholar 

  28. Cartling, B.: Control of Resolution and Perception in Working Memory, Behav. Brain Res. 100 (1999), 255-271.

    Google Scholar 

  29. Cartling, B.: Neuromodulatory Control of Interacting Medial Temporal Lobe and Neocor-tex in Memory Consolidation and Working Memory, Behav. Brain Res. 126 (2001), 65-80.

    Google Scholar 

  30. Connors, B.W. and Gutnick, M.J.: Intrinsic Firing Patterns of Diverse Neocortical Neurons, Trends Neurosci. 13 (1990), 99-104.

    Google Scholar 

  31. McCormick, D.A., Connors, B.W., Lighthall, J.W. and Prince, D.A.: Comparative Electrophys-iology of Pyramidal and Sparsely Spiny Stellate Neurons of the Neocortex, J. Neurophysiol. 54 (1985), 782-806.

    Google Scholar 

  32. Hille, B.: Ionic Channels of Excitable Membranes, Sinauer, Sunderland, 1992.

    Google Scholar 

  33. Kandel, E.R., Schwartz, J.H. and Jessell, T.M.: Principles of Neural Science, McGraw-Hill, New York, 2000.

    Google Scholar 

  34. Thomson, A.M. and Radpour, S.: Excitatory Connections Between CA1 Pyramidal Cells Revealed by Spike Triggered Averaging in Slices of Rat Hippocampus are Partially NMDA Receptor Mediated, Eur. J. Neurosci. 3 (1991), 587-601.

    Google Scholar 

  35. Asztely, F., Wigström, H. and Gustafsson, B.: The Relative Contribution of NMDA Receptor Channels in the Expression of Long-Term Potentiation in the Hippocampal CA1 Region, Eur. J. Neurosci. 4 (1992), 681-690.

    Google Scholar 

  36. Thomson, A.M. and Deuchars, J.: Temporal and Spatial Properties of Local Circuits in Neocortex, Trends Neurosci. 17 (1994), 119-126.

    Google Scholar 

  37. Miles, R.: Synaptic Excitation of Inhibitory Cells by Single CA3 Hippocampal Pyramidal Cells of the Guinea-Pig in Vitro, J. Physiol. 428 (1990), 61-77.

    Google Scholar 

  38. Blatz, A.L. and Magleby, K.L.: Single Apamin-Blocked Ca-Activated K +Channels of Small Conductance in Cultured Rat Skeletal Muscle, Nature, 323 (1986), 718-720.

    Google Scholar 

  39. Yamada, W.M., Koch, C. and Adams, P.R.: Multiple channels and calcium dynamics, in C. Koch and I. Segev (eds.) Methods in Neuronal Modeling. From Synapses to Networks, MIT Press, Cambridge, (1989), pp. 97-133.

    Google Scholar 

  40. Tsodyks, M.V. and Sejnowski, T.: Rapid State Switching in Balanced Cortical Network Models, Network 6 (1995), 111-124.

    Google Scholar 

  41. Gupta, A., Wang, Y. and Markram, H.; Organizing Principles for a Diversity of GABAergic Interneurons and Synapses in the Neocortex, Science, 287 (2000), 273-278.

    Google Scholar 

  42. Hestrin, S., Nicoll, R.A., Perkel, D.J. and Sah, P.: Analysis of Excitatory Synaptic Action in Pyramidal Cells Using Whole-Cell Recording from Rat Hippocampal Slices, J. Physiol. 422 (1990), 203-225.

    Google Scholar 

  43. Mason, A. and Larkman, A.: Correlations Between Morphology and Electrophysiology of Pyra-midal Neurons in Slices of Rat Visual Cortex. II. Electrophysiology, J. Neurosci. 10 (1990), 1415-1428.

    Google Scholar 

  44. Stern, P., Edwards, F.A. and Sakmann, B.: Fast and Slow Components of Unitary EPSCs on Stellate Cells Elicited by Focal Stimulation in Slices of Rat Visual Cortex, J. Physiol. 449 (1992), 247-278.

    Google Scholar 

  45. Gilbert, C.D., Hirsch, J.A. and Wiesel, T.N.: Lateral Interactions in Visual Cortex, Cold Spring Harbor Symp. Quant. Biol. LV (1990), 663-677.

  46. Buhl, E.H., Halasy, K. and Somogyi, P.: Diverse Sources of Hippocampal Unitary Inhibitory Postsynaptic Potentials and the Number of Synaptic Release Sites, Nature 368 (1994), 823-828.

    Google Scholar 

  47. Martin, K.A.C.: From Single Cells to Simple Circuits in the Cerebral Cortex, Quart. J. Exp. Physiol. 73 (1988), 637-702.

    Google Scholar 

  48. Bland, B.H.: The Physiology and Pharmacology of Hippocampal Formation Theta Rhythms, Prog. Neurobiol. 26 (1986), 1-54.

    Google Scholar 

  49. Galambos, R., Makeig, S. and Talmachoff, P.J.: A 40-Hz Auditory Potential Recorded from the Human Scalp, Proc. Natl. Acad. Sci. USA 78 (1981), 2643-2647.

    Google Scholar 

  50. Baddeley, A.: Working Memory, Clarendon Press, Oxford, 1986.

    Google Scholar 

  51. Fuster, J.M.: Memory in the Cerebral Cortex. An Empirical Approach to Neural Networks in the Human and Nonhuman Primate, MIT Press, Cambridge, 1995.

    Google Scholar 

  52. Chao, L.L. and Knight, R.T.: Prefrontal and Posterior Cortical Activation During Auditory Working Memory, Cogn. Brain Res. 4 (1996), 27-37.

    Google Scholar 

  53. Courtney, S.M., Ungerleider, L.G., Keil, K. and Haxby, J.V.: Object and Spatial Visual Working Memory Activate Separate Neural Systems in Human Cortex, Cereb. Cortex 6 (1996), 39-49.

    Google Scholar 

  54. Fuster, J.M.: Network memory, Trends Neurosci. 20 (1997), 451-459.

    Google Scholar 

  55. Wang, D.L., Buhmann, J. and von der Malsburg, C.: Pattern Segmentation in Associative Memory, Neural Comput. 2 (1990), 94-106.

    Google Scholar 

  56. Lisman, J.E. and Idiart, M.A.P.: Storage of Short-Term Memories in Oscillatory Subcycles, Science, 267 (1995), 1512-1515.

    Google Scholar 

  57. Horn, D. and Opher, I.: Temporal Segmentation in a Neural Dynamic System, Neural Comput. 8 (1996), 373-389.

    Google Scholar 

  58. Jensen, O., Idiart, M.A.P. and Lisman, J.E.: Physiologically Realistic Formation of Autoasso-ciative Memory in Networks with Theta/Gamma Oscillations: Role of Fast NMDA Channels, Learning Mem. 3 (1996), 243-256.

    Google Scholar 

  59. Milner, P.M.: A Model for Visual Shape Recognition, Psychol. Rev. 81 (1974), 521-535.

    Google Scholar 

  60. von der Malsburg, C.: The correlation theory of brain function, Internal Report 81-2 of the Department of Neurobiology of the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany, 1981. Reprinted in E. Domany, K. Schulten and J. L. van Hemmen (eds.) Models of Neural Networks 2, Springer, Berlin, (1994), pp. 95-119.

    Google Scholar 

  61. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. and Reitboeck, H.J.: Coherent Oscillations: A Mechanism of Feature Linking in the Visual Cortex?, Biol. Cybern. 60 (1988), 121-130.

    Google Scholar 

  62. Gray, C.M. and Singer, W.: Stimulus-Specific Neuronal Oscillations in Orientation Columns of Cat Visual Cortex, Proc. Natl. Acad. Sci. USA 86 (1989), 1698-1792.

    Google Scholar 

  63. Joliot, M., Ribary, U. and Llinas, R.: Human Oscillatory Brain Activity Near 40 Hz Coexists with Cognitive Temporal Binding, Proc. Natl. Acad. Sci. USA 91 (1994), 11748-11751..

    Google Scholar 

  64. Singer, W. and Gray, C.M.: Visual Feature Integration and the Temporal Correlation Hypothesis, Ann. Rev. Neurosci. 18 (1995), 555-586.

    Google Scholar 

  65. Fries, P., Roelfsema, P.R., Engel, A.K., König, P. and Singer, W.: Synchronization of Oscillatory Responses in Visual Cortex Correlates with Perception in Interocular Rivalry, Proc. Natl. Acad. Sci. USA 94 (1997), 12699-12704.

    Google Scholar 

  66. Stopfer, M., Bhagavan, S., Smith, B.H. and Laurent, G.: Impaired Odour Discrimination on Desynchronization of Odour-Encoding Neural Assemblies, Nature 390 (1997), 70-74.

    Google Scholar 

  67. Miller, G.A.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information, Psychol. Rev. 63 (1956), 81-97.

    Google Scholar 

  68. Mecklinger, A., Kramer, A.F. and Strayer, D.L.: Event Related Potentials and EEG Components in a Semantic Memory Search Task, Psychophysiology 29 (1992), 104-119.

    Google Scholar 

  69. Nakamura, K., Mikami, A. and Kubota, K.: Oscillatory Neural Activity Related to Visual Short-Term Memory in Monkey Temporal Pole, Neuro-Rep 3 (1992), 117-120.

    Google Scholar 

  70. Krause, C.M., Lang, A.H., Laine, M., Kuusisto, M. and Pörn, B.: Event-Related EEG Desyn-chronization and Synchronization During an Auditory Memory Task, Electroencephalogr. Clin. Neurophysiol. 98 (1996), 319-326.

    Google Scholar 

  71. Klimesch, W., Doppelmayr, M., Schimke, H. and Ripper, B.: Theta Synchronization and Alpha Desynchronization in a Memory Task, Psychophysiology 34 (1997), 169-176.

    Google Scholar 

  72. Tallon-Baudry, C., Bertrand, O., Peronnet, F. and Pernier, J.: Induced γ-Band Activity During the Delay of a Visual Short-Term Memory Task in Humans, J. Neurosci. 18 (1998), 4244-4254.

    Google Scholar 

  73. O'Keefe, J. and Recce, M.L.: Phase Relationship Between Hippocampal Place Units and the EEG Theta Rhythm, Hippocampus 3 (1993), 317-330.

    Google Scholar 

  74. Skaggs, W.E., McNaughton, B.L., Wilson, M.A. and Barnes, C.A.: Theta Phase Precession in Hippocampal Neuronal Populations and the Compression of Temporal Sequences, Hippocampus 6 (1996), 149-172.

    Google Scholar 

  75. Sternberg, S.: High-Speed Scanning in Human Memory, Science 153 (1966), 652-654.

    Google Scholar 

  76. Stewart, M. and Fox, S.E.: Do Septal Neurons Pace the Hippocampal Theta Rhythm? Trends Neurosci. 13 (1990), 163-169.

    Google Scholar 

  77. Monmaur, P., Collet, A., Puma, C., Frankel-Kohn, L. and Sharif, A.: Relations Between Acetyl-choline Release and Electrophysiological Characteristics of Theta Rhythm: A Microdialysis Study in the Urethane-Anesthetized Rat Hippocampus, Brain Res. Bull. 42 (1997), 141-146.

    Google Scholar 

  78. Madison, D.V. and Nicoll, R.A.: Noradrenaline Blocks Accomodation of Pyramidal Cell Discharge in the Hippocampus, Nature 299 (1982), 636-638.

    Google Scholar 

  79. Colino, A. and Halliwell, J.V.: Differential Modulation of Three Separate K-Conductances in Hippocampal CA1 Neurons by Serotonin, Nature 328 (1987), 73-77.

    Google Scholar 

  80. Nicoll, R.A.: The Coupling of Neurotransmitter Receptors to Ion Channels in the Brain, Science 241 (1988), 545-551.

    Google Scholar 

  81. McCormick, D.A.: Cholinergic and Noradrenergic Modulation of Thalamocortical Processing, Trends Neurosci. 12 (1989), 215-221.

    Google Scholar 

  82. Baskys, A.: Metabotropic Receptors and 'Slow' Excitatory Actions of Glutamate Agonists in the Hippocampus, Trends Neurosci. 15 (1992), 92-96.

    Google Scholar 

  83. Malenka, R.C. and Nicoll, R.A.: Dopamine Decreases the Calcium-Activated After-hyperpolarization in Hippocampal CA1 Pyramidal Cells, Brain Res. 379 (1986), 210-215.

    Google Scholar 

  84. Berretta, N., Berton, F., Bianchi, R., Capogna, M., Francesconi, W. and Brunelli, M.: Effects of Dopamine, D-1-Dopaminergic and D-2-Dopaminergic Agonists on the Excitability of Hip-pocampal CA1 Pyramidal Cells in Guinea-Pig, Exp. Brain Res. 83 (1990), 124-130.

    Google Scholar 

  85. Kopelman, M.D.: The Cholinergic Neurotransmitter System in Human Memory and Dementia: A Review, Quart. J. Exp. Psychol. 38 (1986), 535-573.

    Google Scholar 

  86. Everitt, B.J. and Robbins, T.W.: Central Cholinergic Systems and Cognition, Ann. Rev. Psychol. 48 (1997), 649-684.

    Google Scholar 

  87. Hasselmo, M.E.: Neuromodulation: Acetylcholine and Memory Consolidation, Trends Cogn. Sci. 3 (1999), 351-359.

    Google Scholar 

  88. Coyle, J.T., Price, D.L. and DeLong, M.R.: Alzheimer's Disease: A Disorder of Cortical Cholin-ergic Innervation, Science 219 (1983), 1184-1190.

    Google Scholar 

  89. Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T. and DeLong, M.R.: Alzheimer's Disease and Senile Dementia: Loss of Neurons in the Basal Forebrain, Science 215 (1982), 1237-1239.

    Google Scholar 

  90. Bartus, R.: Physostigmine and Recent Memory: Effects in Young and Aged Nonhuman Primates, Science 206 (1979), 1087-1089.

    Google Scholar 

  91. Miyamoto, M., Narumi, S., Nagaoka, A. and Coyle, J.T.: Effects of Continuous Infusion of Cholinergic Drugs on Memory Impairment in Rats with Basal Forebrain Lesions, J. Pharmacol. Exp. Ther. 248 (1989), 825-835.

    Google Scholar 

  92. Chatterjee, A., Morris, M.K., Bowers, D., Williamson, D.J., Doty, L. and Heilman, K.M.: Cholin-ergic Treatment of An Amnesic Man with a Basal Forebrain Lesion: Theoretical Implications, J. Neurol. Neurosurge. Psychiatry, 56 (1993), 1282-1289.

    Google Scholar 

  93. Ghoneim, M.M. and Mewaldt, S.P.: Studies on Human Memory: The Interactions of Diazepam, Scopolamine and Physostigmine, Psychopharmacology 52 (1977), 1-6.

    Google Scholar 

  94. Kopelman, M.D. and Corn, T.H.: Cholinergic "Blockade" as a Model for Cholinergic Deple-tion: A Comparison of the Memory Deficits with Those of Alzheimer-Type Dementia and the Alcoholic Korsakoff Syndrome, Brain 111 (1988), 1079-1110.

    Google Scholar 

  95. Petersen, R.C.: Scopolamine Induced Learning Failures in Man, Psychopharmacologia 52 (1977), 283-289.

    Google Scholar 

  96. Spencer, Jr., D.G. and Lal, H.: Effects of Anticholinergic Drugs on Learning and Memory, Drug Dev. Res. 3 (1983), 489-502.

    Google Scholar 

  97. Broks, P., Preston, G.C., Traub, M., Poppleton, P., Ward, C. and Stahl, S.M.: Modelling Demen-tia: Effects of Scopolamine on Memory and Attention, Neuropsychologia 26 (1988), 685-700.

    Google Scholar 

  98. Damasio, A.R., Graff-Redford, N.R., Eslinger, P.J., Damasio, H. and Kassell, N.: Amnesia Following Basal Forebrain Lesions, Arch. Neurol. 42 (1985), 263-271.

    Google Scholar 

  99. DeLuca, J.: Predicting Neurobehavioral Patterns Following Anterior Communicating Artery Aneurysm, Cortex 29 (1993), 639-647.

    Google Scholar 

  100. Lidow, M.S., Goldman-Rakic, P.S., Gallager, D.W. and Rakic, P.: Distribution of Dopaminergic Receptors in the Primate Cerebral Cortex: Quantitative Audiographic Analysis Using 3 H Raclopride, 3 H Spiperone, and 3 H SCH23390, Neuroscience 40 (1991), 657-671.

    Google Scholar 

  101. Fukushima, J., Fukushima, K., Chiba, T., Tanaka, S., Yamashita, I. and Kato, M.: Disturbances of Voluntary Control of Saccadic Eye Movements in Schizophrenic Patients, Biol. Psychiatry 23 (1988), 670-677.

    Google Scholar 

  102. Park, S. and Holzman, P.S.: Schizophrenics Show Spatial Working Memory Deficits, Arch. Gen. Psychiatry 49 (1992), 975-982.

    Google Scholar 

  103. Weinberger, D.R., Berman, K.F. and Zec, R.F.: Physiological Dysfunction of Dorsolateral Pre-frontal Cortex in Schizophrenia, Arch. Gen. Psychiatry 43 (1986), 114-124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cartling, B. Neuromodulatory Control of Neocortical Microcircuits with Activity-Dependent Short-Term Synaptic Depression. Journal of Biological Physics 30, 261–284 (2004). https://doi.org/10.1023/B:JOBP.0000046745.65807.5e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOBP.0000046745.65807.5e

Navigation